Czasopismo
2015
|
Vol. 35, Fasc. 2
|
201--222
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Let us assume that (B(1)t, B(2)t, B(3)t + μt) is a three-dimensional Brownian motion with drift μ, starting at the origin. Then Xt = ∥(B(1)t, B(2)t, B(3)t + μt)∥, its distance from the starting point, is a diffusion with many applications. We investigate the supremum of (Xt), give an infinite-series formula for its distribution function and an exact estimate of the density of this distribution in terms of elementary functions.
Czasopismo
Rocznik
Tom
Strony
201--222
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, andrzej.pyc@pwr.edu.pl
autor
- Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, tomasz.zak@pwr.edu.pl
autor
- Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, grzegorz.serafin@pwr.edu.pl
Bibliografia
- [1] L. Alili, P. Graczyk, and T. Żak, On inversions and Doob h-transforms of linear diffusions, in: In Memoriam Marc Yor – Séminaire de Probabilités XLVII, C. Donati-Martin, A. Lejay, and A. Rouault (Eds.), Lecture Notes in Math., Vol. 2137, Springer, 2015, pp. 107-126.
- [2] A. N. Borodin and P. Salminen, Handbook of Brownian Motion – Facts and Formulae, second edition, Birkhäuser, 2002.
- [3] H. Dym and H. P. McKean, Fourier Series and Integrals, Academic Press, 1972.
- [4] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, seventh edition, Academic Press, 2007.
- [5] N. Grinberg, Some problems in stochastic analysis: Itô’s formula for convex functions, interacting particle systems and Dyson’s Brownian motion, Ph.D. Thesis, University of Warwick, 2011.
- [6] Ph. Hartman, Ordinary Differential Equations, Wiley, 1964.
- [7] J. W. Pitman and L. C. G. Rogers, Markov functions, Ann. Probab. 9 (1981), pp. 573-582.
- [8] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Grudlehren Math. Wiss., Vol. 293, Springer, third edition, 1999.
- [9] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes and Martingales. Volume 2. Itô Calculus, Cambridge University Press, 2000.
- [10] D. Williams, Path decomposition and continuity of local time for one-dimensional diffusions. I, Proc. London Math. Soc. 3 (28) (1974), pp. 738-768.
- [11] A. Zygmund, Trigonometric Series, Cambridge University Press, 2002.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-62a4057b-8cce-4c12-abe8-ed3221d7d478