Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 25, No. 1 | 31--39
Tytuł artykułu

Computation of latent heat in the system of multi-component order parameter : 3D Ashkin-Teller model

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The method for computing the latent heat in a system with many independently behaving components of the order parameter proposed previously is presented for a chosen point of the phase diagram of the 3D Ashkin-Teller (AH) model. Binder, Challa, and Lee-Kosterlitz cumulants are exploited and supplemented by the use of the energy distribution histogram. The proposed computer experiments using the Metropolis algorithm calculate the cumulants in question, the internal energy and its partial contributions as well as the energy distribution for the model Hamiltonian and its components. The important part of our paper is an attempt to validate the results obtained by several independent methods.
Wydawca

Rocznik
Strony
31--39
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Adam Mickiewicz University Faculty of Physics ul. Umultowska 85 61-614 Poznań, Poland
  • Adam Mickiewicz University Faculty of Physics ul. Umultowska 85 61-614 Poznań, Poland
autor
  • Adam Mickiewicz University Faculty of Physics ul. Umultowska 85 61-614 Poznań, Poland, gmusial@amu.edu.pl
Bibliografia
  • [1] K. Binder, D.P. Landau, Finite-size scaling at first-order phase transitions, Phys. Rev. B 30, 1477 (1984).
  • [2] M.S.S. Challa, D.P. Landau, K. Binder, Finite-size effects at temperature-driven first-order transitions, Phys. Rev. B 34, 1841 (1986).
  • [3] J. Lee, J.M. Kosterlitz, Finite-size scaling and Monte Carlo simulations of first-order phase transitions, Phys. Rev. B 43, 3265 (1991).
  • [4] D. Jeziorek-Knioła, Z. Wojtkowiak, G. Musiał, Computation of Latent Heat based on the Energy Distribution Histogram in the 3D Ashkin-Teller Model, Acta Phys. Polon. A 133, 435 (2018).
  • [5] J. Ashkin, E. Teller, Statistics of two-dimensional lattices with four components, Phys. Rev. 64, 178 (1943).
  • [6] J.P. Santos, F.C.S. Barreto, Upper Bounds on the Critical Temperature of the Ashkin-Teller Model, Braz. J. Phys. 46, 70 (2016).
  • [7] Ü. Akıncı, Nonequilibrium phase transitions in isotropic Ashkin-Teller model, Physica A 469, 740 (2017).
  • [8] J.P. Santos, D.S. Rosa, F.C.S. Barreto, New Baxter phase in the Ashkin-Teller model on a cubic lattice, Phys. Lett. A 382, 272 (2018).
  • [9] R.V. Ditzian, J.R. Banavar, G.S. Grest, L.P. Kadanoff, Phase diagram for the Ashkin-Teller model in three dimensions, Phys. Rev. B 22, 2542 (1980).
  • [10] G. Musiał, Monte Carlo analysis of the tricritical behavior in a three-dimensional system with a multicomponent order parameter: The Ashkin-Teller model, Phys. Rev. B 69, 024407 (2004).
  • [11] G. Musiał, J. Rogiers, On the possibility of nonuniversal behavior in the 3D Ashkin-Teller model, Phys. Status Solidi B 243, 335 (2006).
  • [12] Z. Wojtkowiak, G. Musiał, Wide crossover in the 3D AshkinTeller model, Physica A 513, 104 (2019).
  • [13] R.J. Baxter, Exactly Solvable Models in Statistical Mechanics (Academic Press, London, 1982).
  • [14] M.S. Gronsleth, T.B. Nilssen, E.K. Dahl, E.B. Stiansen, C.M. Varma, A. Sudbo, Thermodynamic properties near the onset of loop-current order in high-Tc superconducting cuprates, Phys. Rev. B 79, 094506 (2009).
  • [15] A. Giuliani, V. Mastropietro, Anomalous universality in the anisotropic Ashkin-Teller model, Comm. in Math. Phys. 256, 681 (2005); V. Mastropietro, Non-Perturbative Renormalization (World Scientific, London, 2008).
  • [16] S. Wiseman, E. Domany, Critical behavior of the randombond Ashkin-Teller model: A Monte Carlo study, Phys. Rev. E 51, 3074 (1995).
  • [17] C. Fan, On critical properties of the Ashkin-Teller model, Phys. Lett. 39A, 136 (1972).
  • [18] D. Jeziorek-Knioła, G. Musiał, L. De¸bski, J. Rogiers, S. Dylak, On Non-Ising Phase Transitions in the 3D Standard Ashkin-Teller Model, Acta Phys. Polon. A 121, 1105 (2012).
  • [19] D. Jeziorek-Knioła, G. Musiał, Z. Wojtkowiak, Arbitrarily Weak First Order Phase Transitions in the 3D Standard Ashkin-Teller Model by MC Computer Experiments, Acta Phys. Polon. A 127, 327 (2015).
  • [20] G. Musiał, L. De¸bski, G. Kamieniarz, Monte Carlo simulations of Ising-like phase transitions in the three-dimensional Ashkin-Teller model, Phys. Rev. B 66, 012407 (2002).
  • [21] G. Szukowski, G. Kamieniarz, G. Musiał, Verification of Ising phase transitions in the three-dimensional AshkinTeller model using Monte Carlo simulations, Phys. Rev. E 77, 031124 (2008).
  • [22] W. Janke, Monte Carlo methods in classical statistical physics, Lect. Notes in Phys. 739, 79 (2008).
  • [23] W. Janke, [In:] Computer Simulations of Surfaces and Interfaces, ed. by B. Dünweg, D.P. Landau, A.I. Milchev, NATO Science Series, II. Math. Phys. Chem. 114, 111–136 (2003).
  • [24] K. Binder, Applications of Monte Carlo methods to statistical physics, Rep. Prog. Phys. 60, 487 (1997).
  • [25] M. Mueller, W. Janke, D.A. Johnston, Nonstandard finite-size scaling at first-order phase transitions, Phys. Rev. Lett. 112, 200601 (2014).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-62a07571-f0a6-4a27-a149-5a5d3612ec14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.