Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, iss. 1 | 180--189
Tytuł artykułu

Supplementary Treatment of Wastewater by Using Ecological Lime Derived from Eggshell Waste – A New Sustainable Strategy for Safe Reuse

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wastewater from wastewater treatment plants (WWTPs) often requires further treatment before it can be safely reused. Lime is a common and affordable material used for this purpose, but its production can generate significant environmental impacts. This study developed an eco-friendly and effective lime substitute from eggshell waste for wastewater treatment. First, pre-treated wastewater effluent from WWTP El Jadida, Morocco, was collected and characterized. It was found that COD, BOD5, and TSS values showed non-conformity from Moroccan discharge standards, as well as high concentrations of heavy metals such as cadmium (Cd), zinc (Zn), aluminum (Al), chromium (Cr), manganese (Mn), lead (Pb), silver (Ag), beryllium (Be), copper (Cu) and cobalt (Co). These pollutants represent a potential risk to human health and the environmental ecosystem. To reduce this pollution, the optimal mass of lime powder obtained by thermal treatment of eggshell waste was determined by testing a concentration series of 6, 12, 18, 24, 30, and 36 g·L-1. The findings confirmed that the addition of the optimal dose of prepared lime (24 g·L-1) resulted in a significant reduction in pollution parameters, with abatement rates of 77% for BOD5, 63% for COD and 66% for TSS, respectively. Furthermore, the eco-friendly lime substitute also showed promise in reducing the colorization rate for dyes by 84% and removing heavy metals through precipitation. However, the generated by-product loaded with toxic pollutants should be encapsulated in eco-materials to ensure safe operation and contribute to a sustainable management strategy for wastewater treatment.
Słowa kluczowe
Wydawca

Rocznik
Strony
180--189
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, ENSAM, Mohammed V University in Rabat, Morocco, assalaicha2013@gmail.com
  • Laboratory of Organic Bioorganic Chemistry and Environment, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
  • Higher School of Education and Training, University Chouaib Doukkali, El Jadida, Morocco
  • Laboratory of Organic Bioorganic Chemistry and Environment, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
  • Higher School of Education and Training, University Chouaib Doukkali, El Jadida, Morocco
  • Laboratory of Organic Bioorganic Chemistry and Environment, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco
  • Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, ENSAM, Mohammed V University in Rabat, Morocco
  • Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, ENSAM, Mohammed V University in Rabat, Morocco
Bibliografia
  • 1. Abubakar, A., Usman, B. 2021. Moroccan Journal of Chemistry optimization and evaluation of biodiesel quality produced from cattle fat using CaO/Al2O3 AS CATALYST.
  • 2. Ahmed, J., Thakur, A., Goyal, A. 2021. Industrial Wastewater and Its Toxic Effects. https://doi.org/10.1039/9781839165399-00001
  • 3. Bashir, A., Malik, L.A., Ahad, S., Manzoor, T., Bhat, M.A., Dar, G.N., Pandith, A.H., 2019. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett., 17, 729–754. https://doi.org/10.1007/s10311-018-00828-y
  • 4. Bhat, S.A., Bashir, O., Ul Haq, S.A., Amin, T., Rafiq, A., Ali, M., Américo-Pinheiro, J.H.P., Sher, F. 2022a. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 303, 134788. https://doi.org/10.1016/j.chemosphere.2022.134788
  • 5. Bhat, S.A., Bashir, O., Ul Haq, S.A., Amin, T., Rafiq, A., Ali, M., Américo-Pinheiro, J.H.P., Sher, F., 2022b. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 303, 134788. https://doi.org/10.1016/j.chemosphere.2022.134788
  • 6. Chai, W.S., Cheun, J.Y., Kumar, P.S., Mubashir, M., Majeed, Z., Banat, F., Ho, S.-H., Show, P.L. 2021a. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod., 296, 126589. https://doi.org/10.1016/j.jclepro.2021.126589
  • 7. Chai, W.S., Cheun, J.Y., Kumar, P.S., Mubashir, M., Majeed, Z., Banat, F., Ho, S.-H., Show, P.L. 2021b. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod., 296, 126589. https://doi.org/10.1016/j.jclepro.2021.126589
  • 8. Clarke, C.J., Tu, W.-C., Levers, O., Bröhl, A., Hallett, J.P. 2018. Green and Sustainable Solvents in Chemical Processes. Chem. Rev., 118, 747–800. https://doi.org/10.1021/acs.chemrev.7b00571
  • 9. Er-Raki, S., Ezzahar, J., Merlin, O., Amazirh, A., Hssaine, B.A., Kharrou, M.H., Khabba, S., Chehbouni, A. 2021. Performance of the HYDRUS-1D model for water balance components assessment of irrigated winter wheat under different water managements in semi-arid region of Morocco. Agric. Water Manag., 244, 106546. https://doi.org/10.1016/j.agwat.2020.106546
  • 10. Farkas, K., Walker, D.I., Adriaenssens, E.M., McDonald, J.E., Hillary, L.S., Malham, S.K., Jones, D.L. 2020. Viral indicators for tracking domestic wastewater contamination in the aquatic environment. Water Res., 181, 115926. https://doi.org/10.1016/j.watres.2020.115926
  • 11. Fu, Z., Xi, S. 2020. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods, 30, 167–176. https://doi.org/10.1080/15376516.2019.1701594
  • 12. Gondo, R., Kolawole, O.D., Mbaiwa, J.E., Motsholapheko, M.R. 2020. Demographic and socio-economic factors influencing water governance in the Okavango Delta, Botswana. Sci. Afr., 10, e00602. https://doi.org/10.1016/j.sciaf.2020.e00602
  • 13. Guvenc, S.Y., Okut, Y., Ozak, M., Haktanir, B., Bilgili, M.S. 2016. Process optimization via response surface methodology in the treatment of metal working industry wastewater with electrocoagulation. Water Sci. Technol. 75, 833–846. https://doi.org/10.2166/wst.2016.557
  • 14. Hsu, S.-C., Chen, H.-L., Chou, C.-F., Liu, W.-C., Wu, C.-T. 2023. Characterization of microbial contamination of retail washed and unwashed shell eggs in Taiwan. Food Control, 149, 109718. https://doi.org/10.1016/j.foodcont.2023.109718
  • 15. Hu, B., Ai, Y., Jin, J., Hayat, T., Alsaedi, A., Zhuang, L., Wang, X. 2020. Efficient elimination of organic and inorganic pollutants by biochar and biocharbased materials. Biochar, 2, 47–64. https://doi.org/10.1007/s42773-020-00044-4
  • 16.Johari, N.A., Yusof, N., Ismail, A.F. 2022. Performance of mixed matrix ultrafiltration membrane for textile wastewater treatment. Mater. Today Proc., 2nd International Conference on Sustainable Environmental Technology, 65, 3015–3019. https://doi.org/10.1016/j.matpr.2022.03.579
  • 17. Kouali, H., Chaouti, A., Achtak, H., Elkalay, K., Dahbi, A. 2022. Contamination and ecological risk assessment of trace metals in surface sediments from coastal areas (El Jadida, Safi and Essaouira) along the Atlantic coast of Morocco. J. Afr. Earth Sci., 186, 104417. https://doi.org/10.1016/j.jafrearsci.2021.104417
  • 18. Ma, D., Yi, H., Lai, C., Liu, X., Huo, X., An, Z., Li, L., Fu, Y., Li, B., Zhang, M., Qin, L., Liu, S., Yang, L. 2021. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere, 275, 130104. https://doi.org/10.1016/j.chemosphere.2021.130104
  • 19. Madhav, S., Ahamad, A., Singh, A.K., Kushawaha, J., Chauhan, J.S., Sharma, S., Singh, P. 2020a. Water Pollutants: Sources and Impact on the Environment and Human Health, in: Pooja, D., Kumar, P., Singh, P., Patil, S. (Eds.), Sensors in Water Pollutants Monitoring: Role of Material, Advanced Functional Materials and Sensors. Springer, Singapore, 43–62. https://doi.org/10.1007/978-981-15-0671-0_4
  • 20. Madhav, S., Ahamad, A., Singh, A.K., Kushawaha, J., Chauhan, J.S., Sharma, S., Singh, P. 2020b. Water Pollutants: Sources and Impact on the Environment and Human Health, in: Sensors in Water Pollutants Monitoring: Role of Material. Springer, Singapore, 43–62. https://doi.org/10.1007/978-981-15-0671-0_4
  • 21. Obey, G., Adelaide, M., Ramaraj, R. 2022. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod., 7, 109–115. https://doi.org/10.1016/j.jobab.2021.12.001
  • 22. Obotey Ezugbe, E., Rathilal, S. 2020. Membrane Technologies in Wastewater Treatment: A Review. Membranes, 10, 89. https://doi.org/10.3390/membranes10050089
  • 23. Ouchouia, I., Chaouki, A. 2022. De la variabilité climatique au changement du régime hydrologique dans le bassin de l’oued Ouzoud/ Haut Atlas Central/ Maroc.
  • 24. Pandeya, B., Buytaert, W., Potter, C. 2021. Designing citizen science for water and ecosystem services management in data-poor regions: Challenges and opportunities. Curr. Res. Environ. Sustain., 3, 100059. https://doi.org/10.1016/j.crsust.2021.100059
  • 25. Prabakar, D., Suvetha K, S., Manimudi, V.T., Mathimani, T., Kumar, G., Rene, E.R., Pugazhendhi, A. 2018. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns. J. Environ. Manage., 218, 165–180. https://doi.org/10.1016/j.jenvman.2018.03.136
  • 26. Quina, M.J., Soares, M.A.R., Quinta-Ferreira, R. 2017. Applications of industrial eggshell as a valuable anthropogenic resource. Resour. Conserv. Recycl., 123, 176–186. https://doi.org/10.1016/j.resconrec.2016.09.027
  • 27. Rohim, R., Ahmad, R., Ibrahim, N., Hamidin, N., Abidin, C.Z.A. 2014. Characterization of calcium oxide catalyst from eggshell waste. Adv. Environ. Biol. 8, 35–38.
  • 28. Saravanan, A., Kumar, P.S., Hemavathy, R.V., Jeevanantham, S., Jawahar, M.J., Neshaanthini, J.P., Saravanan, R. 2022. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. Chemosphere, 307, 135713. https://doi.org/10.1016/j.chemosphere.2022.135713
  • 29. Sharma, P., Rani, L., Grewal, A.S., Srivastav, A.L. 2022. Chapter2 - Impact of pharmaceuticals and antibiotics waste on the river ecosystem: a growing threat, in: Madhav, S., Kanhaiya, S., Srivastav, A., Singh, V., Singh, P. (Eds.), Ecological Significance of River Ecosystems. Elsevier, 15–36. https://doi.org/10.1016/B978-0-323-85045-2.00015-7
  • 30. Su, H., Hantoko, D., Yan, M., Cai, Y., Kanchanatip, E., Liu, J., Zhou, X., Zhang, S. 2019. Agricultural And Pharmaceutical Applications Of Eggshells: A Comprehensive Review Of Eggshell Waste Value-Added Products. Int. J. Hydrog. Energy 44, 21451–21463. https://doi.org/10.1016/j.ijhydene.2019.06.203
  • 31. Sun, Q., Zhao, C., Qiu, Q., Guo, S., Zhang, Y., Mu, H. 2022. Oyster shell waste as potential cosubstrate for enhancing methanogenesis of starch wastewater at low inoculation ratio. Bioresour. Technol., 361, 127689. https://doi.org/10.1016/j.biortech.2022.127689
  • 32. Tahreen, A., Jami, M.S., Ali, F. 2020. Role of electrocoagulation in wastewater treatment: A developmental review. J. Water Process Eng., 37, 101440. https://doi.org/10.1016/j.jwpe.2020.101440
  • 33. Tapsuwan, S., Peña-Arancibia, J.L., Lazarow, N., Albisetti, M., Zheng, H., Rojas, R., Torres-Alferez, V., Chiew, F.H.S., Hopkins, R., Penton, D.J. 2022. A benefit cost analysis of strategic and operational management options for water management in hyper-arid southern Peru. Agric. Water Manag., 265, 107518. https://doi.org/10.1016/j.agwat.2022.107518
  • 34. Tsai, W.T., Yang, J.M., Lai, C.W., Cheng, Y.H., Lin, C.C., Yeh, C.W. 2006. Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour. Technol., 97, 488–493. https://doi.org/10.1016/j.biortech.2005.02.050
  • 35. Wang, Yubao, Wei, H., Wang, Yuanzhu, Peng, C., Dai, J. 2021. Chinese industrial water pollution and the prevention trends: An assessment based on environmental complaint reporting system (ECRS). Alex. Eng. J., 60, 5803–5812. https://doi.org/10.1016/j.aej.2021.04.015
  • 36. Xiao, L., Liu, J., Ge, J. 2021. Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries. Agric. Water Manag. 243, 106417. https://doi.org/10.1016/j.agwat.2020.106417
  • 37. Yang, D., Zhao, J., Ahmad, W., Nasir Amin, M., Aslam, F., Khan, K., Ahmad, A. 2022. Potential use of waste eggshells in cement-based materials: A bibliographic analysis and review of the material properties. Constr. Build. Mater., 344, 128143. https://doi.org/10.1016/j.conbuildmat.2022.128143
  • 38. Yang, Y.C.E., Son, K., Hung, F., Tidwell, V. 2020. Impact of climate change on adaptive management decisions in the face of water scarcity. J. Hydrol., 588, 125015. https://doi.org/10.1016/j.jhydrol.2020.125015
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6273fdcb-05b3-41f2-8308-b6ac7a48e127
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.