Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | Vol. 71, no. 3 | 1111--1117
Tytuł artykułu

Earthquake network construction models: from Abe‑Suzuki to a multiplex approach

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
From the early stage of seismological research, a complex network is one of the statistical methods to investigate the complexity of earthquake systems. The benefit of using this method is to inspect the systems with minimum information about their entities and corresponding interactions. Achieving a high interest in studying the seismic events using the complex network resulted in defining models to map the seismic data into networks. Application of these models to the seismic data sets in nonidentical geographical regions has yielded promising results independent of time and location. In this review, we bring in the recent famous models varying from monolayer to multiplex and compare their proficiency in capturing the complexity of the seismicity by using two data sets from Iran and California.
Wydawca

Czasopismo
Rocznik
Strony
1111--1117
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
Bibliografia
  • 1. Abe S, Okamoto Y (2001) Nonextensive statistical mechanics and its applications, vol 560. Springer, Berlin
  • 2. Abe S, Suzuki N (2004) Small-world structure of earthquake network. Phys A 337(1–2):357–362
  • 3. Abe S, Suzuki N (2005) Scale-free statistics of time interval between successive earthquakes. Phys A 350(2–4):588–596
  • 4. Abe S, Suzuki N (2006) Complex earthquake networks: hierarchical organization and assortative mixing. Phys Rev E 74(2):026113
  • 5. Abe S, Suzuki N (2012) Dynamical evolution of the community structure of complex earthquake network. Europhys Lett 99(3):39001
  • 6. Altınok Y (1991) Evaluation of earthquake risk in west anatolia by semi-markov model. Geophysics 5:135–140
  • 7. Altinok Y, Kolcak D (1999) An application of the semi-markov model for earthquake occurrences in North Anatolia, Turkey. J Balkan Geophys Soc 2(4):90–99
  • 8. Banavar JR, Maritan A, Rinaldo A (1999) Size and form in efficient transportation networks. Nature 399(6732):130–132
  • 9. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512
  • 10. Barabási A-L, Bonabeau E (2003) Scale-free networks. Sci Am 288(5):60–69
  • 11. Billio M, Getmansky M, Lo AW, Pelizzon L (2012) Econometric measures of connectedness and systemic risk in the finance and insurance sectors. J Financ Econ 104(3):535–559
  • 12. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–308
  • 13. Borgatti SP, Mehra A, Brass DJ, Labianca G (2009) Network analysis in the social sciences. Science 323(5916):892–895
  • 14. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198
  • 15. Cardillo A, Gómez-Gardenes J, Zanin M, Romance M, Papo D, Pozo F, Boccaletti S (2013) Emergence of network features from multiplexity. Sci Rep 3(1):1–6
  • 16. Costa LF, Oliveira ON Jr, Travieso G, Rodrigues FA, Villas Boas PR, Antiqueira L, Viana MP, Correa Rocha LE (2011) Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv Phys 60(3):329–412
  • 17. Darooneh AH, Lotfi N (2014) Active and passive faults detection by using the pagerank algorithm. Europhys Lett 107(4):49001
  • 18. De Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter MA, Gómez S, Arenas A (2013) Mathematical formulation of multilayer networks. Phys Rev X 3(4):041022
  • 19. Donges JF, Zou Y, Marwan N, Kurths J (2009) The backbone of the climate network. Europhys Lett 87(4):48007
  • 20. Donges JF, Donner RV, Kurths J (2013) Testing time series irreversibility using complex network methods. Europhys Lett 102(1):10004
  • 21. Emmert-Streib F, Dehmer M (2010) Influence of the time scale on the construction of financial networks. PLoS ONE 5(9):e12884
  • 22. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826
  • 23. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188
  • 24. Guye M, Bettus G, Bartolomei F, Cozzone PJ (2010) Graph theoretical analysis of structural and functional connectivity mri in normal and pathological brain networks. MAGMA 23(5):409–421
  • 25. Helmstetter A, Kagan Y, Jackson D (2007) High-resolution time-independent grid-based forecast for m>= 5 earthquakes in California. Seismol Res Lett 78(1):78–86
  • 26. Herrera C, FA N, Lomnitz C (2006) Time-dependent earthquake hazard evaluation in seismogenic systems using mixed markov chains: an application to the Japan area. Earth Planet Space 58(8):973–979
  • 27. Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42
  • 28. Kagan Y, Jackson D (1994) Long-term probabilistic forecasting of earthquakes. J Geophys Res 99(B7):13685–13700
  • 29. Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–271
  • 30. Lacasa L, Toral R (2010) Description of stochastic and chaotic series using visibility graphs. Phys Rev E 82(3):036120
  • 31. Lacasa L, Luque B, Ballesteros F, Luque J, Nuno JC (2008) From time series to complex networks: the visibility graph. Proc Natl Acad Sci 105(13):4972–4975
  • 32. Lacasa L, Luque B, Luque J, Nuno JC (2009) The visibility graph: a new method for estimating the hurst exponent of fractional Brownian motion. Europhys Lett 86(3):30001
  • 33. Lotfi N (2023) The earthquake network: the best time scale for network construction. arXiv:2301.02073
  • 34. Lotfi N, Darooneh A (2012) The earthquakes network: the role of cel size. Eur Phys J B 85(1):1–4
  • 35. Lotfi N, Darooneh AH (2013) Nonextensivity measure for earthquake networks. Phys A 392(14):3061–3065
  • 36. Lotfi N, Darooneh AH, Rodrigues FA (2018) Centrality in earthquake multiplex networks. Chaos 28(6):063113
  • 37. Martín FA, Pastén D (2022) Complex networks and the b-value relationship using the degree probability distribution: the case of three mega-earthquakes in chile in the last decade. Entropy 24(3):337
  • 38. Mello MA, Felix GM, Pinheiro RB, Muylaert RL, Geiselman C, Santana SE, Tschapka M, Lotfi N, Rodrigues FA, Stevens RD (2019) Insights into the assembly rules of a continent-wide multilayer network. Nat Ecol Evol 3(11):1525–1532
  • 39. Nava FA, Herrera C, Frez J, Glowacka E (2005) Seismic hazard evaluation using Markov chains: application to the Japan area. Pure Appl Geophys 162(6):1347–1366
  • 40. Omori F (1894) On the aftershocks of earthquakes. J Colloid Interface Sci 7:111–120
  • 41. Pastén D, Czechowski Z, Toledo B (2018) Time series analysis in earthquake complex networks. Chaos Interdiscip J Nonlinear Sci 28(8):083128
  • 42. Rezaei S, Darooneh AH, Lotfi N, Asaadi N (2017) The earthquakes network: retrieving the empirical seismological laws. Phys A 471:80–87
  • 43. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069
  • 44. Stein S, Wysession M (2009) An introduction to seismology, earthquakes, and earth structure. Wiley, Hoboken
  • 45. Szell M, Lambiotte R, Thurner S (2010) Multirelational organization of large-scale social networks in an online world. Proc Natl Acad Sci 107(31):13636–13641
  • 46. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP et al (2015) String v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(D1):D447–D452
  • 47. Telesca L, Lovallo M (2012) Analysis of seismic sequences by using the method of visibility graph. Europhys Lett 97(5):50002
  • 48. Telesca L, Lovallo M, Aggarwal S, Khan P, Rastogi B (2016) Visibility graph analysis of the 2003–2012 earthquake sequence in the Kachchh region of Western India. Pure Appl Geophys 173(1):125–132
  • 49. Votsi I, Limnios N, Tsaklidis G, Papadimitriou E (2012) Estimation of the expected number of earthquake occurrences based on semi-Markov models. Methodol Comput Appl Probab 14(3):685–703
  • 50. Votsi I, Limnios N, Tsaklidis G, Papadimitriou E (2013) Hidden Markov models revealing the stress field underlying the earthquake generation. Phys A 392(13):2868–2885
  • 51. Votsi I, Limnios N, Tsaklidis G, Papadimitriou E (2014) Hidden semi-Markov modeling for the estimation of earthquake occurrence rates. Commun Stat Theory Methods 43(7):1484–1502
  • 52. Wang XF, Chen G (2003) Complex networks: small-world, scale-free and beyond. Circuits Syst Mag IEEE 3(1):6–20
  • 53. Wang X, Koç Y, Derrible S, Ahmad SN, Pino WJ, Kooij RE (2017) Multi-criteria robustness analysis of metro networks. Phys A 474:19–31
  • 54. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’networks. Nature 393(6684):440–442
  • 55. Zhang X, Gan C (2018) Global attractivity and optimal dynamic countermeasure of a virus propagation model in complex networks. Phys A 490:1004–1018
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-61d46c4c-91ad-4d61-8f5a-61ea7b75bec8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.