Czasopismo
2023
|
Vol. 23, no. 3
|
art. no. e213, 2023
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the thermal effects on mechanical properties of polyvinyl alcohol fiber-reinforced engineered cementitious composites (PVA–ECC) were investigated systematically from perspective of multi-scales. At composite level, the compressive strength increases from 38 to 50 MPa as the samples were heated from 30 to 200 °C, whereas it declines to 20 MPa at 800 °C. In respect of tensile performance, at range of 30– 200 °C, the ultimate tensile stress and strain of ECC showed a decrease tendency with rising temperature, but still remained strain-hardening behavior at 200 °C. In addition, the elevated temperature exposures are adverse to multiple-cracking behavior of ECC. At micro-scale, it was found that the fiber/matrix interfacial bond reduces as exposure temperature rises, which is supposed to avail the fiber slippage, and thereby ductility of ECC. Nonetheless, through micromechanics-based analysis, the enhanced matrix toughness and severe deteriorated fiber strength prevailed over the above positive effect, which resulted in the decayed tensile properties of ECC.
Czasopismo
Rocznik
Tom
Strony
art. no. e213, 2023
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
- School of Civil Engineering, Chongqing University, 400045 Chongqing, People’s Republic of China, zhangzg@cqu.edu.cn
autor
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China, jcliu@hku.hk
autor
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), Singapore, Republic of Singapore, jli019@e.ntu.edu.sg
autor
- School of Civil Engineering, Chongqing University, 400045 Chongqing, People’s Republic of China
autor
- School of Civil Engineering, Chongqing University, 400045 Chongqing, People’s Republic of China, dijin@cqu.edu.cn
Bibliografia
- 1. Li VC, Leung CK. Steady-state and multiple cracking of short random fiber composites. J Eng Mech. 1992;118:2246–64.
- 2. Zhang ZG, Qin FJ, Ma H, Xu LJ. Tailoring an impact resistant engineered cementitious composite (ECC) by incorporation of crumb rubber. Constr Build Mater. 2020;262: 120116.
- 3. Li VC, Wu C, Wang S, Ogawa A, Saito T. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA–ECC). ACI Mater J. 2002;99(5):463–72.
- 4. Zhang Z, Liu S, Yang F, Weng Y, Qian S. Sustainable high strength, high ductility engineered cementitious composites (ECC) with substitution of cement by rice husk ash. J Clean Prod. 2021;317: 128379.
- 5. Zhang ZG, Li Z, He J, Shi XM. High-strength engineered cementitious composites with nanosilica incorporated: Mechanical performance and autogenous self-healing behavior. Cement Concr Compos. 2023;135: 104837.
- 6. Zhang Z, Yang F, Liu J, Wang SP. Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash. Cem Concr Res. 2020;137: 106200.
- 7. Liu D, Qin F, Di J, Zhang Z. Flexural behavior of reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP) and ECC. Case Stud Construct Mater. 2023;19:e02270.
- 8. Qin F, Zhang Z, Yin Z, Di J, et al. Use of high strength, high ductility engineered cementitious composites (ECC) to enhance the flexural performance of reinforced concrete beam. J Build Eng. 2020;32: 101746.
- 9. Wu B, Su XP, Li U, Yuan J. Effect of high temperature on residual mechanical properties of confined and unconfined high strength concrete. ACI Mater J. 2002;99(4):399–407.
- 10. Zhang Z, Yu J, Qin F, Sun F. Thermal effect on mechanical properties of metakaolin-based engineered geopolymer composites (EGC). Case Stud Construct Mater. 2023;18:e02150.
- 11. Xiao J, Li Z, Xie Q, Shen L. Effect of strain rate on compressive behaviour of high-strength concrete after exposure to elevated temperatures. Fire Saf J. 2016;83:25–37.
- 12. Liu J, Tan KH. Mechanism of PVA fibers in mitigating explosive spalling of engineered cementitious composite at elevated temperature. Cement Concr Compos. 2018;93:235–45.
- 13. Liu J, Tan KH, Yao Y. A new perspective on nature of fire-induced spalling in concrete. Constr Build Mater. 2018;184:581–90.
- 14. Sahmaran M, Lachemi M, Li VC. Assessing mechanical properties and microstructure of fire-damaged engineered cementitious composites. ACI Mater J. 2010;107(3):297–304.
- 15. Liu J, Tan KH, Fan S. Residual mechanical properties and spalling resistance of strain-hardening cementitious composite with Class C fly ash. Constr Build Mater. 2018;181:253–65.
- 16. Pourfalah S. Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures. Constr Build Mater. 2018;158:921–37.
- 17. Yi L, Wang X, Bu R, Zhang S, Zhou Y. A methodology for predicting temperature distribution inside concrete pavement under a pool fire. Combust Sci Technol. 2019;23:1–20.
- 18. Willam K, Xi Y, Lee K, Kim B. Thermal response of reinforced concrete structures in nuclear power plants. SESM No. 02-2009, Research Report for Oak Ridge National Laboratory; 2009.
- 19. Lu H, Hao J, Zhong J, Wang Y, Yang H. Analysis of sunshine temperature field of steel box girder based on monitoring data. Adv Civil Eng. 2020;2020:9572602.
- 20. Bhat PS, Chang V, Li M. Effect of elevated temperature on strainhardening engineered cementitious composites. Constr Build Mater. 2014;69:370–80.
- 21. Mechtcherine V, Silva FD, Muller S, Jun P, Toledo RD. Coupled strain-rate and temperature effects on the tensile behavior of strainhardening cement-based composites (SHCC) with PVA fibers. Cem Concr Res. 2012;42:417–1427.
- 22. Mohammed B, Achara B, Liew M, Alaloul W, Khed V. Effects of elevated temperature on the tensile properties of NS-modified selfconsolidating engineered cementitious composites and property optimization using response surface methodology (RSM). Constr Build Mater. 2019;206:449–69.
- 23. Magalhães MS, Filho RD, Fairbairn EM. Thermal stability of PVA fiber strain hardening cement-based composites. Constr Build Mater. 2015;94:437–47.
- 24. Zhang J, Lv T, Zhu Y, Hou D. Damage mechanism of engineered cementitious composites after exposed to elevated temperatures: experimental and molecular dynamics study. Cement Concr Compos. 2022;129: 104507.
- 25. Yu JT, Lin JH, Zhang Z, Li VC. Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures. Constr Build Mater. 2015;99:82–9.
- 26. Zhang Z, Liu J, Xu X, Yuan L. Effect of sub-elevated temperature on mechanical properties of ECC with different fly ash contents. Constr Build Mater. 2020;262: 120096.
- 27. Zhang Z, Yuvaraj A, Di J, Qian S. Matrix design of light weight, high strength, high ductility ECC. Constr Build Mater. 2019;210:188–97.
- 28. Liu D, Yu J, Qin F, Zhang K, Zhang Z. Mechanical performance of high-strength engineering cementitious composites (ECC) with hybriding PE and steel fibers. Case Stud Construct Mater. 2023;18: e01961.
- 29. Li VC, Wang S, Wu C. Tensile strain-hardening behavior of PVAECC. ACI Mater J. 2001;98(6):483–92.
- 30. ASTM C109. Standard test method for compressive strength of hydraulic cement mortars; 2014.
- 31. ASTM E399-12. Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials; 2014.
- 32. Sahmaran M, Ozbay E, Yucel HE, Lachemi M, Li VC. Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures. J Mater Civ Eng. 2011;23(12):1735–45.
- 33. Dias W, Khoury GA, Sullivan P. Mechanical properties of hardened cement paste exposed to temperatures up to 700 °C (1292F). ACI Mater J. 1990;87(2):160–6.
- 34. Khoury GA. Compressive strength of concrete at high temperatures: a reassessment. Mag Concr Res. 1992;44(161):291–309.
- 35. Kanda T, Li VC. Multiple cracking sequence and saturation in fiber reinforced cementitious composites. JCI Concr Res Technol. 1998;9(2):19–33.
- 36. Zhang Z, Hu J, Ma H. Feasibility study of ECC with self-healing capacity applied on the long-span steel bridge deck overlay. Int J Pavement Eng. 2019;20(8):884–93.
- 37. Lin Z, Kanda T, Li VC. On interface property characterization and performance of fiber reinforced cementitious composites. Concr Sci Eng. 1999;1:173–84.
- 38. Kanda T, Li VC. Interface property and apparent strength of highstrength hydrophilic fiber in cement matrix. J Mater Civ Eng. 1998;10(1):5–13.
- 39. Li J, Weng J, Chen Z, Yang EH. A generic model to determine crack spacing of short and randomly oriented polymeric fiber-reinforced strain-hardening cementitious composites (SHCC). Cement Concr Compos. 2021;118: 103919.
- 40. Yang EH, Wang S, Yang Y, Li VC. Fiber-bridging constitutive law of engineered cementitious composites. J Adv Concr Technol. 2008;6(1):181–93.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-61935e05-04e2-4ae7-8b97-e200721ad82f