Warianty tytułu
Języki publikacji
Abstrakty
This paper describes an effective implementation of the inverse data-space multiple elimination method via the three-dimensional (3D) curvelet domain. The method can separate the surface-related operator (A) and primaries (P0) through seismic data matrix inversion. A 3D curvelet transform is introduced to sparsely represent the seismic data in the inverse data space. Hence, this approach is suitable for obtaining an accurate solution because of its multiscale and multidirectional analysis properties. The L1 norm is used to promote sparseness in the transform domain. Then, a high-fidelity separation of the operator (A) and the primaries (P0) is realized. The proposed method is applied to synthetic data from a model containing a salt structure. We compare the results with that of the traditional inverse data-space multiple elimination method and also with that of two-dimensional surface-related multiple elimination. The findings fully demonstrate the superiority of the proposed method over the traditional inverse method; moreover, the proposed method protects the primary energy more effectively than the SRME method.
Czasopismo
Rocznik
Tom
Strony
1197--1205
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- College of Geoexploration Science and Technology, Jilin University, Changchun, China, wangtong14@mails.jlu.edu.cn
autor
- College of Geoexploration Science and Technology, Jilin University, Changchun, China
autor
- College of Geoexploration Science and Technology, Jilin University, Changchun, China
autor
- College of Geoexploration Science and Technology, Jilin University, Changchun, China
Bibliografia
- 1. Berkhout AJ (1982) Seismic migration. Elsevier, Amsterdam, pp 151–195
- 2. Berkhout AJ (2006) Seismic processing in the inverse data space. Geophysics 71(4):A29–A33
- 3. Berkhout AJ, Verschuur DJ (1997) Estimation of multiple scattering by iterative inversion, prat i: theoretical considerations. Geophysics 62:1586–1595
- 4. Berkhout AJ, Verschuur DJ (2006) Multiple removal and wavelet deconvolution in the inverse data space. Seg Technical Program Expanded 2006:2684–2688
- 5. Candès EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 59(8):410–412
- 6. Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43(1):129–159
- 7. Donoho DL (2006a) Compressed sensing. IEEE Trans Information Theor 52(4):1289–1306
- 8. Donoho DL (2006b) For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):907–934
- 9. Dragoset B, Verschuur E, Moore I et al (2010) A perspective on 3D surface-related multiple elimination. Geophysics 75(5):75A245–75A261
- 10. Hennenfent G, Herrmann FJ (2006) Seismic denoising with nonuniformly sampled curvelets. Comput Sci Eng 8(3):16–25
- 11. Herrmann FJ, Hennenfent G (2008) Non-parametric seismic data recovery with curvelet frames. Geophys J Int 173(1):233–248
- 12. Herrmann FJ, Wang D (2008) Seismic wavefield inversion with curvelet-domain sparsity promotion. Seg Tech Prog Exp Abstracts 27(1):3713
- 13. Herrmann FJ, Wang D, Hennenfent G et al (2007) Curvelet-based seismic data processing: a multiscale and nonlinear approach. Geophysics 73(1):A1–A5
- 14. Herrmann FJ, Wang D, Verschuur DJ (2008) Adaptive curvelet-domain primary-multiple separation. Geophysics 73(3):A17–A21
- 15. Hong F, Hu TY, Zhang WB et al (2004) Attenuating multiples for low signal-to-noise ratio seismic data using optimal beam forming. Chin J Geophys 47(6):1106–1110
- 16. Jin DG, Chang X (2008) Research of multiple elimination method in inverse wavelet domain. Chin J Geophys 51(1):250–259
- 17. Kelamis PG, Verschuur DJ (2000) Surface-related multiple elimination on land seismic data: strategies via case studies. Geophysics 65(3):719
- 18. Khan BH, Saragiotis C, Alkhalifah T (2012) A compressive sensing approach to the calculation of the inverse data space[C] 74th EAGE Conference and Exhibition incorporating EUROPEC 2012
- 19. Kleemeyer G, Pettersson SE, Eppenga R et al (2003) It’s Magic; industry first 3D surface multiple elimination and prestack depth migration on Ormen Lange. 65th Annual International Meeting, EAGE, Extended Abstracts
- 20. Lin DC, Young J, Huang Y et al (2004) 3D SRME application in the Gulf of Mexico, 74th annual international meeting, SEG Expanded Abstracts, pp 1257–1260
- 21. Ma J, Sen MK, Chen X (2009) Multiple attenuation using inverse data processing in the plane-wave domain. Geophysics 74(4):V75
- 22. Matson KH, Michell S, Abma R, et al (2004) Advanced subsalt imaging and 3D surface multiple attenuation in Atlantis: a case study. 74th Annual International Meeting, SEG, Expanded Abstracts pp 1269–1272
- 23. Saragiotis C, Doulgeris P, Verschuur DJ (2011) Calculation of the inverse data space via sparse inversion[C] 73rd EAGE Conference and Exhibition incorporating SPE EUROPEC
- 24. Shi Y, Liu H, Li YY (2011) Surface-related multiple attenuation method investigation in inverse data domain. J Jilin Univ 41(1):271–276
- 25. Taner MT, Fomel S, Landa E (2006) Separation and imaging of seismic diffractions using plane-wave decomposition[M], SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists 2006:2401–2405
- 26. Van Den Berg E, Friedlander MP (2008) Probing the Pareto frontier for basis pursuit solutions. SIAM J Sci Comp 31(2):890–912
- 27. Verschuur DJ (1991) Surface-related multiple elimination, an inversion approach. Delft University of Technology, Delft
- 28. Verschuur DJ, Berkhout AJ (1997) Estimation of multiple scattering by iterative inversion, part II: practical aspects and examples. Geophysics 62(5):1596–1611
- 29. Verschuur DJ, Berkhout AJ, Wapenaar CPA (1992) Adaptive surface-related multiple elimination. Geophysics 57(9):1166–1177
- 30. Wang DL, Dang D, Liu WM et al (2011) Internal multiples prediction based on CFP approach and curvelet domain subtraction. J Jilin Univ 41(3):907–914
- 31. Wang T, Wang DL, Feng F et al (2014) 3D surface-related multiple elimination. J Jilin Univ: 44(6):2034–2041
- 32. Weglein AB (1999) Multiple attenuation: an overview of recent advances and the road ahead. Lead Edge 18(1):40–44
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6192b889-9e5f-44e8-8c67-d06d952ce948