Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 26, nr 2 | 48--56
Tytuł artykułu

Optimization of the biofuel production by idealized fermentation of the animal manure, chicken wastes, and sewage sludge

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to optimize an economic procedure to produce biogas and bio-ethanol from different organic wastes such as sewage sludge (SS) and/or cattle dung (CD) and/or poultry manure (PM). The experiment was carried out at a wastewater treatment plant in Egypt. Each waste type was mixed with the starter, CaCO3, and water then loaded in a fermenter and kept for 35 days at 35° C under the anaerobic digestion. The evolved volume of the biogas and the content of methane CH4 were measured daily while the cellulase and protease enzymes were tested every four days. Results have indicated that the digester containing the SS has produced the greatest biogas volume (L) 27.45 Lb/D/d (liters biogas/digester/day), 0.61 Lb/D contents’ volume/d, and cumulative 606.30 Lb/D during the 16th day. Significant CH4 volume percentages produced during the 17th day were 72.07, 71.16, and 71.11% while the produced bio-ethanol alcohol was 2.47, 2.32, and 1.99% from the SS, CD, and PM, respectively. The procedure efficiency is prominent by the production of the biogases and in-situ activating enzymes all in one reactor that was periodically monitored for its reactants and product content. No need for the pre-treatment of wastes as raw materials or chemical additives and the fermented residue can be further tested for soil fertilization. These wastes can be promising for bio-energy production being economic and environment friendly.
Słowa kluczowe
Wydawca

Rocznik
Strony
48--56
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wz.
Twórcy
  • Department of Microbiology, Soils, Water and Environment Research Institute Agriculture Research Centre, Giza, Egypt, mohamedhumic@yahoo.com
  • Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
  • Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
Bibliografia
  • 1. Akin, M., Bartkiene, E., Fatih Özogul, F., Eyduran, S.P., Trif, M., Lorenzo J.M. & Rocha J.M. (2023). Conversion of organic wastes into biofuel by microorganisms: A bibliometric review. Clean. Circul. Bioeconom. (6), 100053. DOI: 10.1016/j.clcb.2023.100053.
  • 2. Aziz, T., Shah, Z., Sarwar, A., Ullah, N., Khan, A.A., Sameeh, M.Y., Haiying, C. & Lin, L. (2023). Production of bioethanol from pretreated rice straw, an integrated and mediated upstream fermentation process. Biomass. Conver. Biorefin. DOI: 10.1007/s13399-023-04283-w.
  • 3. IRENA. (2018). International Renewable Energy Agency. Report about Renewable Energy Outlook: Egypt ISBN 978-92-9260-069-3, p.-W.I.O.
  • 4. Szostek, M., Kaniuczak, J., Hajduk, E., Stanek-Tarkowska, J., Jasiński, T., Niemiec, W. & Smusz, R. (2018). Effect of sewage sludge on the yield and energy value of the aboveground biomass of Jerusalem artichoke (Helianthus tuberosus L.). Archiv. Environ. Protec. 44(3), 42–50. DOI: 10.24425/122285.
  • 5. De Almeida, M.A. & Colombo, R. (2021). Production chain of first-generation sugarcan bioethanol: Characterization and value-added application of wastes. BioEner. Res. 1–16. DOI: 10.1007/s12155-021-10301-4
  • 6. Hawrot-Paw, M., Koniuszy, A., Zając, G., Szyszlak-Bargłowicz, J. & Jaklewicz, J. (2020). Production of second generation bioethanol from straw during simultaneous microbial saccharification and fermentation. Archiv. Environ. Protec. 48(1), 47–52. DOI: 10.24425/aep.2020.132525.
  • 7. Perveen, I., Bukhari, B., Sarwar, A., Aziz, T., Koser, N., Younis, H., Ahmad, Q., Sabahat, S., Tzora, A. & Skoufos, I. (2023). Applications and efficacy of traditional to emerging trends in lactofermentation and submerged cultivation of edible mushrooms. Biomass. Conver. Biorefin. DOI: 10.1007/s13399-023-04694-9.
  • 8. Leta, D., Solomon, L., Chavan, R.B., Daniel, M. & Anbessa, D. (2015). Production of Biogas from Fruit and Vegetable Wastes Mixed with Different Wastes. Environ. Ecol. Res. 3(3), 65–71. DOI: 10.13189/eer.2015.030303.
  • 9. Kozłowski, K., Dach, J., Lewicki, A., Malińska, K., Paulino do Carmo, I.E. & Czekała, W. (2019). Potential of biogas production from animal manure in Poland. Archiv. Environ. Protec. 45(3), 99–108. DOI: 10.24425/aep.2019.128646.
  • 10. Amir, S. (2005). Contribution à la valorisation de boues de stations d’épuration par compostage: Devenir des micropolluantsmétalliques et organiques et bilanhumique du composté. Doctorat, National Institute of Polytechnique, Toulouse, France, 341.
  • 11. Elsayed, M., Eraky, M., Osman, A., Wang, J., Farghali, M., Rashwan, A.K., Yacoub, I.H., Hanelt, D. & Abomohra, A. (2023). Sustainable valorization of waste glycerol into bioethanol and biodiesel through biocircular approaches: a review. Environ. Chem. Let. DOI: 10.1007/s10311-023-01671-6.
  • 12. Cesaro, A. & Belgiorno, B. (2015). Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application. Energies. 8(8), 8121–8144. DOI: 10.3390/en8088121
  • 13. Venko, B. (2017). Hand book, Biogas, Biodiesel and Bioethanol as Multifunctional Renewable fuels and raw Materials. (pp. 5772–5734).
  • 14. Naha, A., Debroy, R., Sharma, D., Shah, M.P. & Nath, S. (2023). Microbial fuel cell: A state-of-the-art and revolutionizing technology for efficient energy recovery. Clean. Circul. Bioeconom. (5), 100050. DOI: 10.1016/j.clcb.2023.100050.
  • 15. Chander, A.M., Singh, N.K. & Venkateswaran, K. (2023). Microbial Technologies in Waste Management, Energy Generation and Climate Change: Implications on Earth and Space. J. Indian Inst. Sci. A Multidiscip. Rev. J. 103(3), 833–838. DOI: 10.1007/s41745-023-00388-3.
  • 16. Dębowski, M., Grala, A., Zieliński, M., Dudek, M. (2022). Efficiency of The Methane Fermentation Process of Macroalgae Biomass Originating From Puck Bay. Archives of Environmental Protection, 38(4), 99–107. DOI: 10.2478/v10265-012-0033-5.
  • 17. Kisielewska, M., Dębowski, M. & Zieliński, M. (2020). Comparison of biogas production from anaerobic digestion of microalgae species belonged to various taxonomic groups. Archiv. Environ. Protec. 46(1), 33–40. DOI 10.24425/aep.2020.132523.
  • 18. Charnay, F. (2005). Compostage des déchetsurbainsdans les Pays en développement :élaborationd’unedémarcheméthodologique pour une production pérenne de compost. Doctorat University of Limoges.
  • 19. Laskri, N. & Nawel, N. (2015). Comparative Study for Biogas Production from Different Wastes. Inter. J. Bio-Sci. Bio-Technol. 7(4), 39–46. DOI: 10.14257/ijbsbt.2015.7.4.05.
  • 20. Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H. & Vavilin, V.A. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 45(10), 65–73. DOI: 10.2166/wst.2002.0292.
  • 21. Page, A.L., Miller, R.H. & Keeney, D.R. (1982). Methods of Soil Analysis. Part 2. Soil Soc. Amer. Inc. Madison, Wisconsin, U.S.A. (pp. 310).
  • 22. APHA. (1992). A.P.H., Association, Standard methods for the examination of water and waste water. 18th, Washington, D.C.
  • 23. Jodice, R., Luzzati, A. & Nappi, P. (1982). The influence of organic fertilizers, obtained from poplar barks, on the correction of iron chlorosis of Luipinus albus L. Plant. Soil. (65), 309–317. DOI: 10.1007/BF02375052.
  • 24. Richards, L.A. (1954). Diagnosis and Improvement of Saline and Alkali Soil. U.S. Dept. Agric. (60), 50–75.
  • 25. Jackson, M.L. (1973). Soil Chemical Analysis. Prentice-Hall of Englewood Cliffs, New Jersy, (pp. 925).
  • 26. Deng, S.P. & Tabatabai, M.A. (1994). Cellulase activity of soils. Soil Biol. Biochem. 26(10), 1347–1354. DOI: 10.1016/0038-0717(94)90216-x.
  • 27. Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytic. Chem. 31(3), 426–428.
  • 28. Kunitz, M. (1947). Crystalline Soybean Trypsin Inhibitor, II. General Properties. J. Gener. Physiol. 30(4), 291–310.
  • 29. Caputi, J.A., Ueda, M. & Brown, T. (1968). Spectrophotometric determination of ethanol in wine. Amer. J. Enol. Vitic. 19(3), 160–165. DOI: 10.5344/ajev.1968.19.3.160.
  • 30. Johnson, L.E., Bond, C.J. & Fribourg, H. (1959). Methods for studying soil microflora-plant disease relationships. Minneapolis: Burgess Publishing Company.
  • 31. Maramba, F.D., Obias, E.D., Julian, B., Taganas, C., Alumbro, R.D. & Judan, A.A. (1978). Biogas and waste recycling, the Philippine experience. Maya farms division, liberity flour mills, Inc. Metro Manila, Philippines.
  • 32. Wujcik, W.J. & Jewell, W.J. (1980). Dry anaerobic fermentation. Biotechnology and Bioengineering Symp., Jon Willey & Sons, Inc. N.Y. 10, 43–65. https://www.osti.gov/biblio/6872238.
  • 33. Chomini, M., Ogbonna, C., Falemara, B. & Micah, P. (2015). Effect of codigestion of cow dung and poultry manure on biogas yield, proximate and amino acid contents of their effluents. IOSR J. Agric. Veterin. Sci. 8(11), 48–56. DOI: 10.9790/2380-081114856.
  • 34. Nnabuchi, M., Akubuko, F., Augustine, C. & Ugwu, G. (2012). Assessment of the effect of co-digestion of chicken dropping and cow dung on biogas generation. Glob. J. Sci. Front. Res. Phys. Space Scie. 12(7), Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary? DOI: 10.1.1.349.3196.
  • 35. Afifi, M.M. & Mahmoud, Y.I.S.C. (2020). Biogas generation from co-digestion manure, poultry waste and kitchen refuses. Nation. Egypt. J. Microbiol. 55(1), 94–112. https://www.ajol.info/index.php/nejmi.
  • 36. El-Akshar Y.S. & Faisal H.S.Y. (2020). Anaerobic Digestion of Food Wastes under Different Concentrations of Total Solids. Inter. J. Environ. 9(3), 159–170. DOI: 10.36632/ije/2020.9.3.10.
  • 37. Bajpai, P. (2017). Basics of anaerobic digestion process. In Springer Briefs in Applied Sciences and Technology, Singapore. (pp. 7–12).
  • 38. Khatoon, N., Ullah, N., Sarwar, A., Ur Rahman, S., Khan, A. A., Aziz, T., Alharbi, M. & Alshammari, A. (2023). Isolation and identification of protease-producing Bacillus strain from cold climate soil and optimization of its production by applying different fermentation conditions Appl. Ecol. Environ. Res. 21(4), 3391–3401. DOI: 10.15666/aeer/2104_33913401.
  • 39. Dinova, N., Belouhova, M., Schneider, I., Rangelov, J. & Topalova, Y. (2018). Control of biogas production process by enzymat and fluorescent image analysis. Biotechnol. Biotechnologic. Equip. 32(2), 366–375. DOI: 10.1080/13102818.2018.1425637.
  • 40. Ullah, N., Ur Rehman, M., Sarwar, A., Nadeem, M., Nelofer, R., Irfan, M., Idrees, M., Ali, U., Naz, S. & Aziz, T. (2023). Effect of bioprocess parameters on alkaline protease production by locally isolated Bacillus cereus AUST7 using tannery waste in submerged fermentation. Biomass. Conver. Biorefin. DOI: 10.1007/s13399-023-04498-x.
  • 41. Alessandra, C. & Vincenzo, B. (2015). Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application. Energies. (8), 8121–8144. DOI: 10.3390/en8088121
  • 42. Bochmann, G., Herfellner, T., Susanto, F., Kreuter, F. & Pesta, G. (2018). Application of enzymes in anaerobic digestion. Water Sci. Technol. 56(10), 29–35. DOI: 10.2166/wst.2007.727.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-615a9546-596d-42b6-832d-43a206e69cdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.