Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2018 | nr 2 | 21--26
Tytuł artykułu

Polimeryzacja rodnikowa z przeniesieniem atomu jako narzędzie do syntezy zaawansowanych materiałów

Treść / Zawartość
Warianty tytułu
Języki publikacji
PL
Abstrakty
Wydawca

Czasopismo
Rocznik
Tom
Strony
21--26
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
autor
  • Instytut Technologii Polimerów i Barwników, Wydział Chemiczny, Politechnika Łódzka
autor
  • Instytut Technologii Polimerów i Barwników, Wydział Chemiczny, Politechnika Łódzka
Bibliografia
  • [1] Matyjaszewski K., 2012, Atom transfer radical polymerization: From mechanisms to applications, Isr. J. Chem., 52, 206-220.
  • [2] Matyjaszewski K., 2012, Atom transfer radical polymerization (ATRP): Current status and future perspectives, Macromolecules, 45, 4015-4039.
  • [3] Matyjaszewski K., Tsarevsky N. V., 2014, Macromolecular engineering by atom transfer radical polymerization, J. Am. Chem. Soc., 136, 6513-6533.
  • [4] Peng C-H., Kong J., Seeliger F., Matyjaszewski K., 2011, Mechanism of halogen exchange in ATRP, Macromolecules, 44, 7546-7557.
  • [5] Mecerreyes D., Moineau G., Dubois P., Jérôme R., Hedrick J.L., Hawker C.J., Malmström E.E., Trollsas M., 1998, Simultaneous Dual Living Polymerizations: A novel one-step approach to block and graft copolymers, Angew. Chem., Int. Ed., 37, 1274-1276.
  • [6] Bielawski C. W., Louie J., Grubbs R.H., 2000,Tandem catalysis: Three mechanistically distinct reactions from a single ruthenium complex, J. Am. Chem. Soc., 122, 12872-12873.
  • [7] Bates F. S., Fredrickson G. H., 1999, Block copolymers-designer soft materials, Phys. Today, 52, 32-38.
  • [8] Zamfir, M., Lutz, J. F., 2012, Ultra-precise insertion of functional monomers in chain-growth polymerizations, Nat. Commun., 3, 1138.
  • [9] Satoh, K., Ozawa S., Mizutani M., Nagai K., Kamigaito M, 2010, Sequence-regulated vinyl copolymers by metal-catalysed step-growth radical polymerization, Nat. Commun., 1, 6.
  • [10] Stals P. J. M., Li Y., Burdyńska J., Nicolaÿ R., Nese A., Palmans A.R.A., Meijer E.W., Matyjaszewski K., Sheiko S.S., 2013, How far can we push polymer architectures?, J. Am. Chem. Soc., 135, 11421-11424.
  • [11] Lee H.-I., Matyjaszewski K., Yu S., Sheiko S.S., 2005, Molecular brushes with spontaneous gradient by atom transfer radical polymerization, Macromolecules, 38, 8264-8271.
  • [12] Lee H.-I., Pietrasik J., Sheiko S.S., Matyjaszewski K., 2010, Stimuli-responsive molecular brushes, Prog. Polym. Sci., 35, 24-44.
  • [13] Rzayev J., 2012, Molecular bottlebrushes: New opportunities in nanomaterials fabrication, ACS Macro Lett., 1, 1146-1149.
  • [14] Neugebauer D., Zhang Y., Pakula T., Sheiko S.S., Matyjaszewski K., 2003, Densely-grafted and double-grafted PEO brushes via ATRP. A route to soft elastomers, Macromolecules, 36, 6746-6755.
  • [15] Coessens V., Pintauer T., Matyjaszewski K., 2001, Functional polymers by atom transfer radical polymerization, Prog. Polym. Sci., 26 , 337-377.
  • [16] Bontempo D., Heredia K.L., Fish B.A., Maynard H.D., 2004, Cysteine-reactive polymers synthesized by atom transfer radical polymerization for conjugation to proteins, J. Am. Chem. Soc., 126, 15372-15373.
  • [17] Qi K., Ma Q., Remsen E.E., Clark C.G., Wooley K.L., 2004, Determination of the bioavailability of biotin conjugated onto shell cross-linked (SCK) nanoparticles, J. Am. Chem. Soc., 126, 6599-6607.
  • [18] Li Y., Armes S. P., 2005, Synthesis and chemical degradation of branched vinyl polymers prepared via ATRP: use of a cleavable disulfide-based branching agent, Macromolecules, 38, 8155-8162.
  • [19] Tsarevsky N. V., Huang J., Matyjaszewski K., 2009, Synthesis of hyperbranched degradable polymers by atom transfer radical (Co) polymerization of inimers with ester or disulfide groups, J. Polym. Sci., Part A: Polym. Chem., 47, 6839-6851.
  • [20] Gao H., Li W., Matyjaszewski K., 2008, Synthesis of Polyacrylate Networks by ATRP: Parameters influencing experimental gel points, Macromolecules, 41, 2335-2340.
  • [21] Li W., Yoon J.A., Zhong M., Matyjaszewski K., 2011, Atom transfer radical copolymerization of monomer and cross-linker under highly dilute conditions, Macromolecules, 44, 3270-3275.
  • [22] Min K., Gao H., Yoon J.A., Wu W., Kowalewski T., Matyjaszewski K., 2009, One-pot synthesis of hairy nanoparticles by emulsion ATRP, Macromolecules, 42, 1597-1603.
  • [23] Tsujii Y., Ohno K., Yamamoto S., Goto A., Fukuda T., 2006, Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization, Adv. Polym., 197, 1-45.
  • [24] Bombalski L., Min K., Dong H., Tang C., Matyjaszewski K., 2007, Preparation of well-defined hybrid materials by ATRP in miniemulsion, Macromolecules, 40, 7429-7432.
  • [25] Pietrasik J., Hui C.M., Chaladaj W., Dong H., Choi J., Jurczak J., Bockstaller M.R., Matyjaszewski K., 2011, Silica-polymethacrylate hybrid particles synthesized using high-pressure atom transfer radical polymerization, Macromol. Rapid Commun., 32, 295-301.
  • [26] Chen M., Briscoe W.H., Armes S.P., Klein J., 2009, Lubrication at physiological pressures by polyzwitterionic brushes, Science, 323, 1698-1701.
  • [27] Kobayashi M., Terayama Y., Hosaka N., Kaido M., Suzuki A., Yamada N., Torikai N., Ishihara K., Takahara A., 2007, Friction behavior of high-density poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media, Soft Matter, 3, 740-746.
  • [28] Choi J., Hui C.M., Pietrasik J., Dong H., Matyjaszewski K., 2012, Toughening fragile matter: mechanical properties of particle solids assembled from polymer-grafted hybrid particles synthesized by ATRP, Soft Matter, 8, 4072-4082.
  • [29] Choi J., Hui C.M., Schmitt M., Pietrasik J., Margel S., Matyjaszewski K., Bockstaller M.R., 2013, Effect of polymer-graft modification on the order formation in particle assembly structures, Langmuir, 29, 6452-6459.
  • [30] Lutz J.-F., 2008, Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials, J. Polym. Sci. A Polym. Chem., 46, 3459-3470.
  • [31] Nicolas J., Mantovani G., Haddleton D.M., 2007, Living radical polymerization as a tool for the synthesis of polymer-protein peptide bioconjugates, Macromol. Rapid Commun., 28, 1083-1111.
  • [32] Wallat J. D., Rose K. A., Pokorski J. K., 2014, Proteins as substrates for controlled radical polymerization, Polym. Chem., 5, 1545-1558.
  • [33] Averick S., Paredes E., Li W., Matyjaszewski K., Das S.R., 2011, Direct DNA conjugation to star polymers for controlled reversible assemblies, Bioconjugate Chem., 22, 2030-2037.
  • [34] Averick S., Simakova A., Park S., Konkolewicz D., Magenau A.J.D., Mehl R.A., Matyjaszewski K., 2012, ATRP under biologically relevant conditions: grafting from a protein, ACS Macro Lett., 1, 6-10.
  • [35] Meszynska A., Badi N., Börner H.G., Lutz J.F., 2012, „Inverse” synthesis of polymer bioconjugates using soluble supports, Chem. Commun., 48, 3887-3889.
  • [36] Cho, H. Y., Averick S.E., Paredes E., Wegner K., Averick A., Jurga S., Das S.R., Matyjaszewski K., 2013, Star Polymers with a Cationic Core Prepared by ATRP for Cellular Nucleic Acids Delivery, Biomacromolecules, 14, 1262-1267.
  • [37] Bencherif S. A., Washburn N.R., Matyjaszewski K., 2009, Synthesis by AGET ATRP of Degradable Nanogel Precursors for In Situ Formation of Nanostructured Hyaluronic Acid Hydrogel, Biomacromolecules, 10, 2499-2507.
  • [38] Loczenski Rose V., Winkler G.S., Allen S., Puri S., Mantovani G., 2013, Polymer siRNA conjugates synthesised by controlled radical polymerisation, Eur. Polym. J., 49, 2861-2883.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-60d23fc5-9acc-4493-b606-daed2dd75a16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.