Czasopismo
2023
|
Vol. 41, No. 4
|
57--67
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the impact of high-temperature, high-pressure carbon dioxide on the steel-cement interface, crucial in engineering structures and carbon capture storage systems. Experiments conducted on N80 steel and ordinary portland cement in synthetic aquifer brine revealed that CO2 exposure significantly exacerbates steel corrosion and cement degradation. The corrosion current density of steel increased to 1.2 μA/cm2 after six months in CO2, compared to 0.3 μA/cm2 in unexposed samples. Cement samples showed a marked decline in mechanical properties, with hardness reducing from 1.25 GPa (giga-Pascal) in control samples to 0.65 GPa after six months. The steel-cement interface integrity also diminished, as evidenced by a decrease in acoustic impedance from 45.0 M-Rayl to 34.0 M-Rayl over six months. These results emphasize the need for advanced materials and strategies to enhance the durability and safety of structures in CO2-rich environments.
Czasopismo
Rocznik
Tom
Strony
57--67
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- College of Architectural Engineering, Zhengzhou Business University, Gongyi, Henan Province, 451200, China, zg15378792233@163.com
Bibliografia
- [1] Koleva DA, Hu J, Fraaij ALA, Stroeven P, Boshkov N, de Wit JHW. Quantitative characterisation of steel/cement paste interface microstructure and corrosion phenomena in mortars suffering from chloride attack. Corros Sci. 2006 Dec 1;48(12):4001–19.
- [2] Dalla Vecchia F, dos Santos VHJM, Schütz MK, Ponzi GGD, Stepanha ASdGe, Malfatti C de F, et al. Wellbore integrity in a saline aquifer: experimental steel-cement interface degradation under supercritical CO2 conditions representative of Brazil’s Parana basin. Int J Greenhouse Gas Control. 2020 Jul 1;98:103077.
- [3] Feng J, Wang ZM, Zheng D, Song GL. The localized corrosion of mild steel in carbonated cement pore solution under supercritical carbon dioxide in a simulated geothermal environment. Constr Build Mater. 2021 Mar 8;274:122035.
- [4] Tremosa J, Mito S, Audigane P, Xue Z. Experimental assessment of well integrity for CO2 geological storage: a numerical study of the geochemical interactions between a CO2-brine mixture and a sandstone-cement-steel sample. Appl Geochem. 2017 Mar 1;78:61–73.
- [5] Mito S, Xue Z, Satoh H. Experimental assessment of well integrity for CO2 geological storage: batch experimental results on geochemical interactions between a CO2 -brine mixture and a sandstone-cement-steel sample. Int J Greenhouse Gas Control. 2015 Aug 1;39: 420–31.
- [6] Nakano K, Ohbuchi A, Mito S, Xue Z. Chemical interaction of well composite samples with supercritical CO2 along the cement - sandstone interface. Energy Procedia. 2014 Jan 1;63:5754–61.
- [7] Loizzo M, Bressers P, Benedictus T, Le Guen Y, Poupard O. Assessing CO2 interaction with cement and steel over a two-year injection period: current state and future risks for the MovECBM project in Poland. Energy Procedia. 2009 Feb 1;1(1):3579–86.
- [8] Carey JW, Lichtner PC. Computational studies of two-phase cement/CO2/brine interaction in wellbore environments. SPE J. 2011;16(04):940–8.
- [9] Li D, Duan Z. The speciation equilibrium coupling with phase equilibrium in the H2O–CO2–NaCl system from 0 to 250°C, from 0 to 1000 bar, and from 0 to 5 molality of NaCl. Chem Geol. 2007;244(3–4):730–51.
- [10] Glasser FP, Marchand J, Samson E. Durability of concrete-degradation phenomena involving detrimental chemical reactions. Cem Concr Res. 2008;38(2): 226–46.
- [11] Schmitt G. Fundamental aspects of CO2 metal loss corrosion. Part II: influence of different parameters on CO2 corrosion mechanism. 2015;139–43. url: https://api.semanticscholar.org/CorpusID:93849534
- [12] Kermani M, Morshed A. Carbon dioxide corrosion in oil and gas productiona compendium. Corrosion. 2003;59(08).
- [13] Xiao T, McPherson B, Bordelon A, Viswanathan H, Dai Z, Tian H, et al. Quantification of CO2-cement-rock interactions at the well-caprock-reservoir interface and implications for geological CO2 storage. Int J Green-house Gas Control. 2017 Aug 1;63:126–40.
- [14] Castellote M, Fernandez L, Andrade C, Alonso C. Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations. Mater Struct. 2009;42:515–25.
- [15] Morandeau A, Thiery M, Dangla P. Investigation of the carbonation mechanism of CH and CSH in terms of kinetics, microstructure changes and moisture properties. Cem Concr Res. 2014;56:153–70.
- [16] Silva DA, Monteiro PJ. The influence of polymers on the hydration of portland cement phases analyzed by soft X-ray transmission microscopy. Cem Concr Rese. 2006;36(8):1501–7.
- [17] Omosebi O, Maheshwari H, Ahmed R, Shah S, Osisanya S, Hassani S, et al. Degradation of well cement in HPHT acidic environment: effects of CO2 concentration and pressure. Cem Concr Compos. 2016 Nov 1;74:54–70.
- [18] Tiong M, Gholami R, Rahman ME. Cement degradation in CO2 storage sites: a review on potential applications of nanomaterials. J Petrol Explor Prod Technol. 2019 Mar 1;9(1):329–40.
- [19] William Carey J, Svec R, Grigg R, Zhang J, Crow W. Experimental investigation of wellbore integrity and CO2–brine flow along the casing–cement microannulus. Int J Greenhouse Gas Control. 2010 Mar 1;4(2):272–82.
- [20] Abdallah S, Fan M, Rees DW. Bonding mechanisms and strength of steel fiber-reinforced cementitious composites: overview. J Mater Civil Eng. 2018;30(3):04018001.
- [21] Hawreen A, Bogas J. Influence of carbon nanotubes on steel–concrete bond strength. Mater Struct. 2018;51: 1–16.
- [22] Carroll S, Carey JW, Dzombak D, Huerta NJ, Li L, Richard T, et al. Review: role of chemistry, mechanics, and transport on well integrity in CO2 storage environments. Int J Greenhouse Gas Control. 2016 Jun 1;49:149–60.
- [23] William Carey J, Svec R, Grigg R, Lichtner PC, Zhang J, Crow W. Wellbore integrity and CO2 brine flow along the casing-cement microannulus. Energy Procedia. 2009 Feb 1;1(1):3609–15.
- [24] Loizzo M, Lombardi S, Deremble L, Lecampion B, Quesada D, Huet B, et al. Monitoring CO2 migration in an injection well: evidence from MovECBM. Energy Procedia. 2011 Jan 1;4:5203–10.
- [25] Hanor JS. Origin of saline fluids in sedimentary basins. Geol Soc London Spec Publ. 1994;78(1):151–74.
- [26] Zhao H, Dilmore R, Allen DE, Hedges SW, Soong Y, Lvov SN. Measurement and modeling of CO2 solubility in natural and synthetic formation brines for CO2 sequestration. Environ Sci Technol. 2015;49(3): 1972–80.
- [27] Wang Z, Zhao Y, Liu M, Shen H, Fang Q, Yao J. Investigation of the effects of small flow rate and particle impact on high temperature CO2 corrosion of N80 steel. Corros Sci. 2022 Dec 1;209:110735.
- [28] Cui L, Kang W, You H, Cheng J, Li Z. Experimental study on corrosion of J55 casing steel and N80 tubing steel in high pressure and high temperature solution containing CO2 and NaCl. J Bio Tribo Corros. 2020 Nov 18;7(1):13.
- [29] Uthaman S, Vishwakarma V, George RP, Ramachandran D, Kumari K, Preetha R, et al. Enhancement of strength and durability of fly ash concrete in seawater environments: synergistic effect of nanoparticles. Constr Build Mater. 2018 Oct 30;187:448–59.
- [30] Ramachandran D, Uthaman S, Vishwakarma V. Studies of carbonation process in nanoparticles modified fly ash concrete. Constr Build Mater. 2020 Aug 20;252: 119127.
- [31] Zhang GA, Liu D, Li YZ, Guo XP. Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO2 conditions. Corros Sci. 2017 May 15;120:107–20.
- [32] Liao K, Zhou F, Song X, Wang Y, Zhao S, Liang J, et al. Synergistic effect of O2 and H2S on the corrosion behavior of N80 steel in a simulated high-pressure flue gas injection system. J Mater Eng Perform. 2020 Jan 1;29(1):155–66.
- [33] Ren X, Lu Y, Wei Q, Yu L, Zhai K, Tang J, et al. The influence of Ca2+ on the growth mechanism of corrosion product film on N80 steel in CO2 corrosion environments. Corros Sci. 2023 Jul 1;218:111168.
- [34] Usman BJ, Umoren SA, Gasem ZM. Inhibition of API 5L X60 steel corrosion in CO2-saturated 3.5% NaCl solution by tannic acid and synergistic effect of KI additive. J Mol Liq. 2017 Jul 1;237:146–56.
- [35] Xiang Y, Xie W, Ni S, He X. Comparative study of A106 steel corrosion in fresh and dirty MEA solutions during the CO2 capture process: Effect of NO3−. Corros Sci. 2020 May 1;167:108521.
- [36] Peng Y, Hughes AE, Mardel JI, Deacon GB, Junk PC, Forsyth M, et al. Leaching behavior and corrosion inhibition of a rare earth carboxylate incorporated epoxy coating system. ACS Appl Mater Interfaces. 2019;11(39):36154–68.
- [37] Gurtubay L, Gallastegui G, Elias A, Rojo N, Barona A. Accelerated ageing of an EAF black slag by carbonation and percolation for long-term behaviour assessment. J Environ Manage. 2014;140:45–50.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-60b917e1-83da-46fe-9b1d-a670c3d6d79d