Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 19, no. 4 | 347--354
Tytuł artykułu

Technological Development of a Yarn Grip System for High-Speed Tensile Testing of High-Performance Fibers

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Particularly in terms of carbon fiber (CF) rovings and further high performance fibers, it is a highly demanding task to clamp technical yarns with low elongations at break during high-speed tensile tests due to their sensitivity to shear stress. For fibers to be tested, a low elongation at break results in short testing times and requires high acceleration. In this paper, four different yarn grips that can be applied with various test machines will be introduced and compared to a wedge screw grip. By using most sensitive CF rovings, advantages and disadvantages of these gripping devices will be qualitatively evaluated by means of testing machines with test speeds of up to 20 m/s and strain rates of up to 200 s-1, respectively. Hence, the reproducibility and precision of test results were considerably enhanced by optimizing the geometry and mass of yarn grips. Moreover, theoretical approaches and calculations for the design of yarn grips suitable for test speeds of up to 100 m/s will be presented.
Wydawca

Rocznik
Strony
347--354
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Textile Machinery and High Performance Material Technology (ITM), 01062 Dresden, Germany, reimar.unger@tu-dresden.de
  • Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Textile Machinery and High Performance Material Technology (ITM), 01062 Dresden, Germany
  • Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Textile Machinery and High Performance Material Technology (ITM), 01062 Dresden, Germany
  • Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Textile Machinery and High Performance Material Technology (ITM), 01062 Dresden, Germany
Bibliografia
  • [1] Bleck, W., Frehn, A., Larour, P., Steinbeck, G. (2004). Untersuchungen zur Ermittlung der Dehnratenabhängigkeit von modernen Karosseriestählen. Materialwissenschaft und Werkstofftechnik, 35(8), S. 505–513.
  • [2] Gizik, D., et al. Heavy tow carbon fibers for aerospace applications. In: ADDITCStuttgart November 30 December 1, 2017.
  • [3] Schuler, H., Mayrhofer, C., Thoma, K. (2006). Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates. International Journal of Impact Engineering, 32(10), S. 1635–1650.
  • [4] Lindner, M., Vanselow, K., Gelbrich, S., Kroll, L. (2018). Fiberreinforced polymers based rebar and stirrup reinforcing concrete structures. Journal of Materials Science and Engineering A, 8(2).
  • [5] Chokri, C. (Ed.) (2016). Textile materials for lightweight constructions (1 ed.). Springer (Berlin, Heidelberg).
  • [6] Al-Mosawe, A., Al-Mahaidi, R., Zhao, X. -L. (2017). Engineering properties of CFRP laminate under high strain rates. Composite Structures, 180, S. 9–15.
  • [7] Kwon, J. et al. (2016). Evaluation of the effect of the strain rate on the tensile properties of carbon–epoxy composite laminates. Journal of Composite Materials, 51(22), S. 3197–3210.
  • [8] Kwon, J. B., Huh, H., Ahn, C. N. An improved technique for reducing the load ringing phenomenon in tensile tests at high strain rates, S. 253–257.
  • [9] Naresh, K., Shankara, K., Rao, B. S., Velmurugan, R. (2016). Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites. Composites Part B: Engineering, 100, S. 125–135.
  • [10] Pariti, V. N. P. M. (2017). Mechanical behavior of carbon and glass fiber reinforced composite materials under varying loading rates. Michigan, University of Michigan–Dearborn, Mechanical Engineering (Masterthesis, Michigan).
  • [11] Zhang, X., Hao, H., Shib, Y., Cui, J., Zhang, X. (2016). Static and dynamic material properties of CFRP/epoxy laminates. Construction and Building Materials, 114, S. 638–649.
  • [12] Zhu, B., et al. (2018). Dynamic Measurement of Foam-Sized Yarn Properties from Yarn Sequence Images. AUTEX RESEARCH JOURNAL, 18. (3.).
  • [13] Bilisik, K., et al. (2017). Development of multistitched three-dimensional (3d) nanocomposite and evaluation of its mechanical and impact properties. AUTEX Research Journal, 17(3), S. 238–249.
  • [14] Ashir, M., et al. (2018). Influence of defined amount of voids on the mechanical properties of carbon fiber-reinforced plastics. Polymer Composites, 15(2), S. 170.
  • [15] Ashir, M., et al. (2018). Development and mechanical properties of adaptive fiber-reinforced plastics. Journal of Industrial Textiles, S. 152808371875752.
  • [16] Wang, Y., et al. Statistical analysis on high strain rate tensile strength of T700 carbon fiber. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2007, Seattle, Washington, USA, November 11–15, 2007. - ISBN 0-7918-4304-1, S. 557–560.
  • [17] Zhou, Y., et al. (2010). Tensile behavior of carbon fiber bundles at different strain rates. Materials Letters, 64(3), S. 246–248.
  • [18] Field, J. E., et al. (2004). Review of experimental techniques for high rate deformation and shock studies. International Journal of Impact Engineering, 30(7), S. 725–775.
  • [19] Zwick/Roell: Product Information - High-Speed Testing Machine Amsler HTM 5020, 8020. http://www.zwickusa. com/no_cache/en/products/dynamic-and-fatigue-testingmachines/servo-hydraulic-testing-machines/htm-highspeed-testing-machines-from-25-to-160-kn.html?tx_z7treedependingdownloads_pi1%5Bfile%5D=512.
  • [20] Zwick/Roell: The specimen under control – Specimen grips and test tools. http://www.zwickusa.com/no_cache/en/products/specimen-grips-and-test-fixtures.html?tx_z7treedependingdownloads_pi1%5Bfile%5D=713.
  • [21] Younes, A., et al. (2012). Stress-strain behavior of carbon filament yarns under high strain rates. Textile Research Journal, 82(7), S. 685–699.
  • [22] Grote, K. -H., Feldhusen, J. (Ed.) (2014). Dubbel (24 ed.). Springer (Berlin, Heidelberg).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-60b75282-0fb7-483c-b0bc-36efe74ee743
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.