Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 101, nr 4 | 173--189
Tytuł artykułu

Prospects for the use of supercritical CO2 cycles

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper contains a comprehensive summary of potential sCO2 cycle applications being considered for power generation. The authors give examples of different sCO2 based cycles used in combination with conventional energy sources like fossil fuels or nuclear as well as renewable energy sources like solar. The article presents sCO2 recompression cycle simulation model results and - using this example, cycle flexibility and parameters - discusses potential application of the cycle.
Wydawca

Rocznik
Strony
173--189
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21/25 Nowowiejska street, 00-665 Warsaw, Poland, jaroslaw.milewski@pw.edu.pl
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21/25 Nowowiejska street, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21/25 Nowowiejska street, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21/25 Nowowiejska street, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21/25 Nowowiejska street, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21/25 Nowowiejska street, 00-665 Warsaw, Poland
Bibliografia
  • [1] Nikonowicz Ł, Milewski J. Determination of electronic conductance of solid oxide fuel cells. J Power Technol 2011;91:82-92.
  • [2] Dzierzgowski K, Wachowski S, Gojtowska W, Lewandowska I, Jasinski P, Gazda M, et al. Praseodymium substituted lanthanum orthoniobate: Electrical and structural properties. Ceram Int 2018;44:8210-5. https://doi.org/10.1016/j.ceramint.2018.01.270.
  • [3] Danilov NA, Lyagaeva JG, Medvedev DA, Demin AK, Tsiakaras P. Transport properties of highly dense proton-conducting BaCe0.8-xZrxDy0.2O3-δ materials in low- and high-temperature ranges. Electrochim Acta 2018;284:551-9. https://doi.org/10.1016/j.electacta.2018.07.179.
  • [4] Mostowy M, Szablowski L. Comparison of the Brayton-Brayton Cycle with the Brayton-Diesel Cycle. J POWER Technol 2018;98:97-105.
  • [5] Fragiacomo P, Lorenzo G De, Corigliano O. Performance Analysis of an Intermediate Temperature {SOE} Test Bench Under {CO}$\less$sub$\greater$2$\less$/sub$\greater$-H$\less$sub$\greater$2$\less$/sub$\greater$O Feeding Stream 2018. https://doi.org/10.20944/preprints201807.0452.v1.
  • [6] Dostal V, Driscoll MJ, Hejzar P. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. Adv Nucl Power Technol Progr 2004.
  • [7] Feher EG. The supercritical thermodynamic power cycle. Energy Convers 1968;8:85-90. https://doi.org/http://dx.doi.org/10.1016/0013-7480(68)90105-8.
  • [8] Chen Y, Lundqvist P, Johansson A, Platell P. A comparative study of the carbon dioxide transcritical power cycle compared with an organic Rankine cycle with R123 as working fluid in waste heat recovery. Appl Therm Eng 2006;26:2142-7.
  • [9] Kulhanek M, Dostal V. Thermodynamic analysis and comparison of supercritical carbon dioxide cycles. Supercrit CO2 Power Cycle Symp 2011.
  • [10] Driscoll MJ. Supercritical CO2 Plant Cost Assessment 2004.
  • [11] Vidhi R, Goswami DY, Chen H, Stefanakos E, Kuravi S, Sabau A. Study of supercritical carbon dioxide power cycle for low grade heat conversion 2011.
  • [12] Akbari AD, Mahmoudi SMS. Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle. Energy 2014;78:501-12. https://doi.org/10.1016/J.ENERGY.2014.10.037.
  • [13] Wang J, Sun Z, Dai Y, Ma S. Parametric optimization design for supercritical {CO2} power cycle using genetic algorithm and artificial neural network. Appl Energy 2010;87:1317-24. https://doi.org/http://dx.doi.org/10.1016/j.apenergy.2009.07.017.
  • [14] Kulhánek M, Dostál V. Thermodynamic Analysis and Comparison of Supercritical Carbon Dioxide Cycles. Supercrit CO2 Power Cycle Symp 2011:1-7.
  • [15] Bryant JC, Saari H, Zanganeh K. An Analysis and Comparison of the Simple and Recompression Supercritical CO2 Cycles. Supercrit CO2 Power Cycle Symp 2011:1-8.
  • [16] Kim YM, Kim CG, Favrat D. Transcritical or supercritical {CO2} cycles using both low- and high-temperature heat sources. Energy 2012;43:402-15. https://doi.org/http://dx.doi.org/10.1016/j.energy.2012.03.076.
  • [17] Moroz L, Burlaka M, Rudenko O. Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant. Supercrit CO2 Power Cycle Symp 2014.
  • [18] Pérez-Pichel GD, Linares JI, Herranz LE, Moratilla BY. Thermal analysis of supercritical {CO2} power cycles: Assessment of their suitability to the forthcoming sodium fast reactors. Nucl Eng Des 2012;250:23-34. https://doi.org/http://dx.doi.org/10.1016/j.nucengdes.2012.05.011.
  • [19] Moisseytsev A, Sienicki JJ. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. Nucl Eng Des 2009;239:1362-71. https://doi.org/http://dx.doi.org/10.1016/j.nucengdes.2009.03.017.
  • [20] Halimi B, Suh KY. Computational analysis of supercritical {CO2} Brayton cycle power conversion system for fusion reactor. Energy Convers Manag 2012;63:38-43. https://doi.org/http://dx.doi.org/10.1016/j.enconman.2012.01.028.
  • [21] Harvego EA, McKellar MG. Optimization and comparison of direct and indirect supercritical carbon dioxide power plant cycles for nuclear applications. Int Mech Eng Congr Expo 2011.
  • [22] Yoon HJ, Ahn Y, Lee JI, Addad Y. Potential advantages of coupling supercritical {CO2} Brayton cycle to water cooled small and medium size reactor. Nucl Eng Des 2012;245:223-32. https://doi.org/http://dx.doi.org/10.1016/j.nucengdes.2012.01.014.
  • [23] Liu J, Chen H, Xu Y, Wang L, Tan C. A solar energy storage and power generation system based on supercritical carbon dioxide. Renew Energy 2014;64:43-51. https://doi.org/http://dx.doi.org/10.1016/j.renene.2013.10.045.
  • [24] Zhang XR, Yamaguchi H, Uneno D, Fujima K, Enomoto M, Sawada N. Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renew Energy 2006;31:1839-54. https://doi.org/http://dx.doi.org/10.1016/j.renene.2005.09.024.
  • [25] Zhang X-R, Yamaguchi H, Uneno D. Experimental study on the performance of solar Rankine system using supercritical {CO2}. Renew Energy 2007;32:2617-28. https://doi.org/http://dx.doi.org/10.1016/j.renene.2007.01.003.
  • [26] Osorio JD, Hovsapian R, Ordonez JC. Dynamic analysis of concentrated solar supercritical {CO}2-based power generation closed-loop cycle. Appl Therm Eng 2016;93:920-34. https://doi.org/10.1016/j.applthermaleng.2015.10.039.
  • [27] Luu MT, Milani D, McNaughton R, Abbas A. Analysis for flexible operation of supercritical {CO}2 Brayton cycle integrated with solar thermal systems. Energy 2017;124:752-71. https://doi.org/10.1016/j.energy.2017.02.040.
  • [28] Al-Sulaiman FA, Atif M. Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower. Energy 2015;82:61-71. https://doi.org/10.1016/j.energy.2014.12.070.
  • [29] Sharan P, Neises T, McTigue JD, Turchi C. Cogeneration using multi-effect distillation and a solar-powered supercritical carbon dioxide Brayton cycle. Desalination 2019;459:20-33. https://doi.org/10.1016/j.desal.2019.02.007.
  • [30] Milani D, Luu MT, McNaughton R, Abbas A. Optimizing an advanced hybrid of solar-assisted supercritical {CO} 2 Brayton cycle: A vital transition for low-carbon power generation industry. Energy Convers Manag 2017;148:1317-31. https://doi.org/10.1016/j.enconman.2017.06.017.
  • [31] Iverson BD, Conboy TM, Pasch JJ, Kruizenga AM. Supercritical CO2 Brayton cycles for solar-thermal energy. Appl Energy 2013;111:957-70.
  • [32] Padilla RV, Too YCS, Benito R, Stein W. Exergetic analysis of supercritical {CO2} Brayton cycles integrated with solar central receivers. Appl Energy 2015;148:348-65. https://doi.org/http://dx.doi.org/10.1016/j.apenergy.2015.03.090.
  • [33] Cheang VT, Hedderwick RA, McGregor C. Benchmarking supercritical carbon dioxide cycles against steam Rankine cycles for Concentrated Solar Power. Sol Energy 2015;113:199-211. https://doi.org/http://dx.doi.org/10.1016/j.solener.2014.12.016.
  • [34] Bae SJ, Ahn Y, Lee J, Lee JI. Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application. J Power Sources 2014;270:608-18. https://doi.org/http://dx.doi.org/10.1016/j.jpowsour.2014.07.121.
  • [35] Kupecki J, Motylinski K, Jagielski S, Wierzbicki M, Brouwer J, Naumovich Y, et al. Energy analysis of a 10 {kW}-class power-to-gas system based on a solid oxide electrolyzer ({SOE}). Energy Convers Manag 2019;199:111934. https://doi.org/10.1016/j.enconman.2019.111934.
  • [36] Mozdzierz M, Berent K, Kimijima S, Szmyd JS, Brus G. A Multiscale Approach to the Numerical Simulation of the Solid Oxide Fuel Cell. Catalysts 2019;9:253. https://doi.org/10.3390/catal9030253.
  • [37] Sánchez D, Chacartegui R, Jiménez-Espadafor F, Sánchez T. A New Concept for High Temperature Fuel Cell Hybrid Systems Using Supercritical Carbon Dioxide. J Fuel Cell Sci Technol 2009;6:1-11.
  • [38] Ding X, Lv X, Weng Y. Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system. Appl Energy 2019;254:113675. https://doi.org/10.1016/j.apenergy.2019.113675.
  • [39] de Escalona JMM. The potential of the supercritical carbon dioxide cycle in high temperature fuel cell hybrid systems. Supercrit CO2 Power Cycle Symp 2011.
  • [40] Marefati M, Mehrpooya M. Introducing and investigation of a combined molten carbonate fuel cell, thermoelectric generator, linear fresnel solar reflector and power turbine combined heating and power process. J Clean Prod 2019;240:118247. https://doi.org/10.1016/j.jclepro.2019.118247.
  • [41] Moullec Y Le. Conception of a pulverized coal fired power plant with carbon capture around a supercritical carbon dioxide brayton cycle. Energy Procedia 2013:1180-6.
  • [42] McClung A, Brun K, Chordia L. Technical and economic evaluation of supercritical oxy-combustion for power generation. 4th Int Symp - Supercrit CO2 Power Cycles 2014.
  • [43] Pickard SAWRFRMEVGERPS. Operation and Analysis of a Supercritical CO2 Brayton Cycle. SANDIA Rep 2010.
  • [44] Brun K. FP, Dennis R eds. Fundamentals and Applications of Supercritical Carbon Dioxide ({SCO}2) Based Power Cycles. Fundam. Appl. Supercrit. Carbon Dioxide Based Power Cycles, Elsevier; 2017. https://doi.org/10.1016/b978-0-08-100804-1.01001-x.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-606359a7-22a5-439f-bde3-20a622d45dd2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.