Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites.
Wydawca

Czasopismo
Rocznik
Strony
1465--1484
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • University of Twente, Faculty of Geo-information Science and Earth Observation, Department of Water Resources, Enschede, The Netherlands, w.j.timmermans@utwente.nl
  • University of Twente, Faculty of Geo-information Science and Earth Observation, Department of Water Resources, Enschede, The Netherlands
  • University of Twente, Faculty of Geo-information Science and Earth Observation, Department of Water Resources, Enschede, The Netherlands
autor
  • University of Twente, Faculty of Geo-information Science and Earth Observation, Department of Water Resources, Enschede, The Netherlands
autor
  • University of Twente, Faculty of Geo-information Science and Earth Observation, Department of Water Resources, Enschede, The Netherlands
autor
  • Laboratory for Earth Observation, Department of Earth Physics, University of Valencia, Valencia, Spain
autor
  • Laboratory for Earth Observation, Department of Earth Physics, University of Valencia, Valencia, Spain
autor
  • Fundacion CEAM, Parque Tecnologico, Valencia, Spain
autor
  • Fundacion CEAM, Parque Tecnologico, Valencia, Spain
  • Instituto Técnico Agronómico Provincial de Albacete (ITAP), Albacete, Spain
  • Instituto Técnico Agronómico Provincial de Albacete (ITAP), Albacete, Spain
  • Instituto Nacional de Tecnica Aerospacial (INTA), Depto. De Observacion de la Tierra, Teledeteccion y Atmosfera, Madrid, Spain
  • Instituto Nacional de Tecnica Aerospacial (INTA), Depto. De Observacion de la Tierra, Teledeteccion y Atmosfera, Madrid, Spain
autor
  • Instituto Nacional de Tecnica Aerospacial (INTA), Depto. De Observacion de la Tierra, Teledeteccion y Atmosfera, Madrid, Spain
autor
  • Global Change Unit (GCU), Department of Earth Physics, University of Valencia, Valencia, Spain
  • Global Change Unit (GCU), Department of Earth Physics, University of Valencia, Valencia, Spain
autor
  • Global Change Unit (GCU), Department of Earth Physics, University of Valencia, Valencia, Spain
autor
  • Global Change Unit (GCU), Department of Earth Physics, University of Valencia, Valencia, Spain
autor
  • Global Change Unit (GCU), Department of Earth Physics, University of Valencia, Valencia, Spain
  • NERC Field Spectroscopy Facility, University of Edinburgh, Edinburgh, United Kingdom
autor
  • Fondazione Edmund Mach-Research and Innovation Centre, San Michele all’Adige, Trento, Italy
autor
  • Flemish Institute for Technological Research (VITO), Mol, Belgium
autor
  • Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Sevilla, Spain
autor
  • Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
autor
  • University Milano Bicocca, Milano, Italy
  • Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
autor
  • University Milano Bicocca, Milano, Italy
  • University of Oviedo, Oviedo, Spain
autor
  • University of Copenhagen, Copenhagen, Denmark
  • Experimental and Systems Ecology, University of Bielefeld, Bielefeld, Germany
autor
  • The Remote Sensing Laboratory, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
autor
  • German Aerospace Center (DLR), Oberpfaffenhofen, Wessling, Germany
autor
  • Babes-Bolyai University, Cluj-Napoca, Romania
autor
  • University of Würzburg, Würzburg, Germany
  • Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
  • University of Warsaw, Warsaw, Poland
autor
  • University of Copenhagen, Copenhagen, Denmark
  • Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
  • University of Reading, Reading, United Kingdom
autor
  • University of Twente, Faculty of Geo-information Science and Earth Observation, Department of Water Resources, Enschede, The Netherlands
  • Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
autor
  • University of Osnabruck, Osnabruck, Germany
  • Massey University, Palmerston North, New Zealand
autor
  • University of Twente, Faculty of Geo-information Science and Earth Observation, Department of Water Resources, Enschede, The Netherlands
Bibliografia
  • [1] Foken, T. (2008), The energy balance closure problem: An overview, Ecol. Appl. 18, 6, 1351-1367, DOI: 10.1890/06-0922.1.
  • [2] Gamon, J.A., C. Coburn, L.B. Flanagan, K.F. Huemmrich, C. Kiddle, G.A. Sanchez- Azofeifa, D.R. Thayer, L. Vescovo, D. Gianelle, D.A. Sims, A.F. Rahman, and G.Z. Pastorello (2010), SpecNet revisited: bridging flux and remote sensing communities, Can. J. Remote Sens. 36, Suppl. 2, 376-390, DOI: 10.5589/m10-067.
  • [3] Gillespie, A., S. Rokugawa, T. Matsunaga, J.S. Cothern, S. Hook, and A.B. Kahle (1998), A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, IEEE T. Geosci. Remote Sens. 36, 4, 1113-1126, DOI: 10.1109/36.700995.
  • [4] Kornelsen, K.C., and P. Coulibaly (2013), Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications, J. Hydrol. 476, 460-489, DOI: 10.1016/j.jhydrol.2012.10.044.
  • [5] McCabe, M.F., and E.F. Wood (2006), Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors, Remote Sens. Environ. 105, 4, 271-285, DOI: 10.1016/j.rse.2006.07.006.
  • [6] Mishra, A.K., and V.P. Singh (2011), Drought modeling - A review, J. Hydrol. 403, 1-2, 157-175, DOI: 10.1016/j.hydrol.2011.03.049.
  • [7] Novick, K., S. Brantley, C.F. Miniat, J. Walker, and J.M. Vosee (2014), Inferring the contribution of advection to total ecosystem scalar fluxes over a tall forest in complex terrain, Agr. Forest Meteorol. 185, 1-13, DOI: 10.1016/ j.agrformet.2013.10.010.
  • [8] Prueger, J.H., J.G. Alfieri, L.E. Hipps, W.P. Kustas, J.L. Chavez, S.R. Evett, M.C. Anderson, A.N. French, C.M.U. Neale, L.G. McKee, J.L. Hatfield, T.A. Howell, and N. Agam (2012), Patch scale turbulence over dryland and irrigated surfaces in a semi-arid landscape under advective conditions during BEAREX08, Adv. Water Resour. 50, 106-119, DOI: 10.1016/ .advwatres.2012.07.014.
  • [9] Rast, M., J. Johannessen, and W. Mauser (2014), Review of understanding of Earth’s hydrological cycle: Observations, theory and modelling, Surv. Geophys. 35, 3, 491-513, DOI: 10.1007/s10712-014-9279-x.
  • [10] Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll (2004), The global land and data assimilation system, Bull. Am. Meteorol. Soc. 85, 3, 381-394, DOI: 10.1175/BAMS-85-3-381.
  • [11] Salama, M.S., R. van der Velde, H.J. van der Woerd, J.C. Kromkamp, C.J.M. Philippart, A.T. Joseph, P.E. O’Neill, R.H. Lang, T. Gish, P.J. Werdell, and Z. Su (2012), Technical note: Calibration and validation of geophysical observa-tion models, Biogeosciences 9, 2195-2201, DOI: 10.5194/bg-9-2195-2012.
  • [12] Seneviratne, S.I., T. Corti, E.L. Davin, M. Hirschi, E.B. Jaeger, I. Lehner, B. Orlowsky, and A.J. Teuling (2010), Investigating soil moisture-climate interactions in a changing climate: A review, Earth Sci. Rev. 99, 3-4, 125-161, DOI: 10.1016/j.earscirev.2010.02.004.
  • [13] Sobrino, J.A., J.C. Jiménez-Muñoz, P.J. Zarco-Tejada, G. Sepulcre-Cantó, E. de Miguel, G. Sòria, M. Romaguera, Y. Julien, J. Cuenca, V. Hidalgo, B. Franch, C. Mattar, L. Morales, A. Gillespie, D. Sabol, L. Balick, Z. Su, L. Jia, A. Gieske, W. Timmermans, A. Olioso, F. Nerry, L. Guanter, J. Moreno, and Q. Shen (2009), Thermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview, Hydrol. Earth Syst. Sci. 13, 2031-2037, DOI: 10.5194/hess-13-2031-2009.
  • [14] Su, Z., W.J. Timmermans, A. Gieske, L. Jia, J.A. Elbers, A. Olioso, J. Timmermans, R. van der Velde, X. Jin, H. van der Kwast, F. Nerry, D. Sabol, J.A. Sobrino, J. Moreno, and R. Bianchi (2008), Quantification of land-atmosphere exchanges of water, energy and carbon dioxide in space and time over the heterogeneous Barrax site, Int. J. Remote Sens. 29, 17-18, 5215-5235, DOI: 10.1080/01431160802326099.
  • [15] Timmermans, J., Z. Su, C. van der Tol, A. Verhoef, and W. Verhoef (2013), Quantifying the uncertainty in estimates of surface-atmosphere fluxes through joint evaluation of the SEBS and SCOPE models, Hydrol. Earth Syst. Sci. 17, 1561-1573, DOI: 10.5194/hess-17-1561-2013.
  • [16] Timmermans, W.J., G. Bertoldi, J.D. Albertson, A. Olioso, Z. Su, and A.S.M. Gieske (2008), Accounting for atmospheric boundary layer variability on flux estimation from RS observations, Int. J. Remote Sens. 29, 17-18, 5275-5290, DOI: 10.1080/01431160802036383.
  • [17] Timmermans, W.J., Z. Su, and A. Olioso (2009), Footprint issues in scintillometry over heterogeneous landscapes, Hydrol. Earth Syst. Sci. 13, 2179-2190, DOI: 10.5194/hess-13-2179-2009.
  • [18] van der Tol, C. (2012), Validation of remote sensing of bare soil ground heat flux, Remote Sens. Environ. 121, 275-286, DOI: 10.1016/j.rse.2012.02.009.
  • [19] van der Tol, C., W. Timmermans, C. Corbari, A. Carrara, J. Timmermans, and Z. Su (2015), An analysis of turbulent heat fluxes and the energy balance during the REFLEX campaign, Acta Geophys. 63, 6, 1516-1539, DOI: 10.1515/ acgeo-2015-0061 (this issue).
  • [20] van Dijk, A.I.J.M., and L.J. Renzullo (2011), Water resource monitoring systems and the role of satellite observations, Hydrol. Earth Syst. Sci. 15, 39-55, DOI: 10.5194/hess-15-39-2011.
  • [21] Wang, K., and R.E. Dickinson (2012), A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability, Rev. Geophys. 50, 2, RG2005, DOI: 10.1029/2011RG000373.
  • [22] Wu, H., and Z.-L. Li (2009), Scale issues in remote sensing: A review on analysis, processing and modeling, Sensors 9, 3, 1768-1793, DOI: 10.3390/ s90301768.
  • [23] Yebra, M., A. van Dijk, R. Leuning, A. Huete, and J.P. Guerschman (2013), Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance, Remote Sens. Environ. 129, 250-261, DOI: 10.1016/j.rse.2012.11.004.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-60607c63-ec47-44fc-85b4-ab260e752d49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.