Warianty tytułu
Języki publikacji
Abstrakty
One of the main challenges for modern agriculture is to seek methods for improvement of crop growth and quality which is based on the sustainable agriculture to provide the growing population with access to high-quality food. Controlled-release fertilizers (CRF) and slow-release fertilizers (SRF) are the answer to these challenges, as they constitute an alternative means of achieving higher agronomic efficiency relative to traditional fertilizers. The focus of this paper is to review the changes and trends regarding the CRF/SRF, with a particular focus on biopolymer-coated fertilizers, specifically sodium alginate as both the biopolymer for coating and a soil conditioner. The presented literature review reveals the promising prospects related to the necessity of developing fertilizers with a controlled/slow release of minerals, involving materials that provide the appropriate mineral release rate and which are characterized by properties ensuring a substantial reduction in the negative impact on the natural environment. This finds confirmation in the clear tendency for applying biodegradable materials, particularly originating from natural sources, which may become the appropriate materials used for fertilizer coating when considering the new requirements concerning environmental issues.
Czasopismo
Rocznik
Tom
Strony
203--217
Opis fizyczny
Bibliogr. 96 poz., rys., tab.
Twórcy
autor
- Department of Water Protection, Central Mining Institute-National Research Institute, Plac Gwarków 1, 40-166 Katowice, Poland, bkonczak@gig.eu
autor
- Department of Water Protection, Central Mining Institute-National Research Institute, Plac Gwarków 1, 40-166 Katowice, Poland, mbialowas@gig.eu
Bibliografia
- 1. Akalin G.O. and Pulat M. 2020. Preparation and characterization of κ-carrageenan hydrogel for controlled release of copper and manganese micronutrients. Polymer Bulletin, 77, 3, 1359–1375. DOI:10.1007/s00289-019-02800-4
- 2. Azeem B., KuShaari K., Man Z.B., Thanh B. 2014. Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release, 181, 11–21. DOI:10.1016/j. jconrel.2014.02.020
- 3. Bi S., Barinelli V., Sobkowicz M.J. 2020. Degradable controlled release fertilizer composite prepared via extrusion: Fabrication, characterization, and release mechanisms. Polymers, 12, 2, 301. DOI:10.3390/polym12020301
- 4. Benlamlih F.Z., Lamhamedi M.S., Pepi S., Benomar L., Messaddeq Y. 2021. Evaluation of a new generation of coated fertilizers to reduce the leaching of mineral nutrients and greenhouse gas (N2 O) emissions. Agronomy, 11, 6, 1129. DOI: 10.3390/ agronomy11061129
- 5. Buchmann C., Steinmetz Z. Brax, M. Peth, S., Schaumann, G.E. 2020. Effect of matric potential and soil-waterhydrogel interactions on biohydrogel-induced soil microstructural stability. Geoderma, 362, 114142. DOI:10.1016/j.geoderma.2019.114142
- 6. Caccavo D., Cascone S., Lamberti G., Barba A.A., Larsson A. 2016 Chapter 10. Swellable hydrogelbased systems for controlled drug delivery, in smart drug delivery system. Sezer, A.D. (Ed). 237-303. DOI:10.5772/61792
- 7. Calabi-Floody M., Medina J., Rumpel C., Condron L.M., Hernandez M., Dumont M., de la Luz Mora M. 2018. Chapter three - Smart fertilizers as a strategy for sustainable agriculture. In: D.L. Sparks (Ed). Advances in Agronomy. Academic Press Inc., 119–157. DOI:10.1016/bs.agron.2017.10.003
- 8. Chandran V., Shaji, H., Mathew L. 2020. Chapter 5 - Methods for controlled release of fertilizers. In: Lewu F.B., Thomas S., Volova T., Rakhimol K.R. (Eds.), Controlled Release Fertilizers for Sustainable Agriculture. Academic Press. DOI:10.1016/ C2018-0-04238-3
- 9. Chen F., Miao Ch., Duan Q., Jiang S., Liu H., Ma L., Li Z., Bao X., Lan B., Chen L., Yu L. 2023. Developing slow release fertilizer through in-situ radiation-synthesis of urea-embedded starch-based hydrogels. Industrial Crops and Products, 191, Part A, 115971. DOI: 10.1016/j.indcrop.2022.115971
- 10. Chowdhury R.B. and Zhang X. 2021. Phosphorus use efficiency in agricultural systems: A comprehensive assessment through the review of national scale substance flow analyses. Ecological Indicators, 121, 107172. DOI:10.1016/j.ecolind.2020.107172
- 11. Communication from the Commission to the European Parliament, the European Council, The Council, The European Economic and Social Committee and the Committee of the Regions The European Green Deal COM(2019) 640 final
- 12. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system COM(2020) 381 final
- 13. de Matos M., Mattos B.D., Tardy, B.L., Rojas, O.J., Magalhães W.L.E. 2018. Use of biogenic silica in porous alginate matrices for sustainable fertilization with tailored nutrient delivery. ACS Sustainable Chemistry & Engineering. 6, 2, 2716–2723. DOI:10.1021/acssuschemeng.7b04331
- 14. de Vries W. 2021. Impacts of nitrogen emissions on ecosystems and human health: A mini review. Science & Health, 100249. DOI:10.1016/j. coesh.2021.100249
- 15. Dębska K., Rutkowska B., Szulc W., Gozdowski D. 2021. changes in selected water quality parameters in the Utrata River as a function of catchment area land use. Water, 13, 21, 2989. DOI: 10.3390/w13212989
- 16. Ding Y., Liu Y., Liu S., Huang, X., Li Z., Tan X., Zeng G., Zhou, L. 2017. Potential benefits of biochar in agricultural soils: A review. Pedosphere, 27, 4, 645–661. DOI:10.1016/S1002-0160(17)60375-8
- 17. Du Toit van der Merwe R., Goosen N.J., McClelland Pott R.W. 2022. Macroalgal-derived alginate soil amendments for water retention, nutrient release rate reduction, and soil pH control. Gels, 8, 9, 548. DOI:10.3390/gels8090548
- 18. Duan Q., Jiang S., Chen F., Li. Z., Ma L., Song Y., Yu X., Chen Y., Liu H., Yu, L. 2023. Fabrication, evaluation methodologies and models of slow-release fertilizers: A review. Industrial Crops and Products, 192, 116075. DOI:10.1016/j.indcrop.2022.116075
- 19. Dubey A. and Mailapalli D.R. 2019. Zeolite coated urea fertilizer using different binders: Fabrication, material properties and nitrogen release studies. Environmental Technology & Innovation, 16, 100452. DOI:10.1016/j.eti.2019.100452
- 20. El-Aziz M.E.A., Salama D.M., Morsi S.M.M., Youssef A.M., El-Sakhawy M. 2021. Development of polymer composites and encapsulation technology for slow-release fertilizers. Reviews in Chemical Engineering, 38, 603–616. DOI:10.1515/revce-2020-0044
- 21. Fertahi S., Ilsouk M., Zeroual Y., Oukarroum A., Barakat A. 2021. Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. Journal of Controlled Release, 330, 341–361. DOI:10.1016/j.jconrel.2020.12.026
- 22. Fu J., Wang C., Chen X., Huang Z., Chen D. 2018. Classification research and types of slow controlled release fertilizers (SRFs) used - A review. Communications in Soil Science and Plant Analysis, 49, 17, 2219–2230, DOI:10.1080/00103624.2018.1499757
- 23. Ganetri I., Essamlali Y., Amadine O., Danoun K., Aboulhrouz S., Zahouily, M. 2020. Chapter 7 - Controlling factors of slow or controlled-release fertilizers, in Controlled Release Fertilizers for Sustainable Agriculture, Lewu F.B., Volova T., Thomas S., Rakhimol K.R. (Eds). Academic Press, pp. 111–129, DOI:10.1016/C2018-0-04238-3
- 24. Ge X., Wang L., Zhang W. 2022. Direct observation of alginate-promoted soil phosphorus availability. ACS Sustainable Chemistry & Engineering. 10, 24, 8011–8021. DOI: 10.1021/acssuschemeng.2c01864
- 25. Gil-Ortiz R., Naranjo M.Á., Ruiz-Navarro A., Atares S., García C., Zotarelli L., Bautista A.S., Vicente O. 2020. Enhanced agronomic efficiency using a new controlled-released, polymeric-coated nitrogen fertilizer in rice. Plants, 9, 1183, DOI:10.3390/plants9091183
- 26. Gorazda K., Kominko H., Nowak A.K., Wiśniak A. 2023. Suspension fertilizers based on alternative raw materials – the key to sustainability and closed nutrient cycles. Archives of Environmental Protection, 49(3), 38–49. DOI:10.24425/aep.2023.147327
- 27. Govindasamy P., Muthusamy S. K., Bagavathiannan M., Mowrer J., Jagannadham P.T.K., Maity, A., Tiwari G. 2023. Nitrogen use efficiency: A key to enhance crop productivity under a changing climate. Frontiers in Plant Science, 14, 1121073. DOI:10.3389/fpls.2023.1121073
- 28. Hurtado A., Aljabali A.A.A., Mishra V., Tambuwala M.M., Serrano-Aroca Á. 2022. Alginate: Enhancement strategies for advanced applications. International Journal of Molecular Sciences, 23, 9, 4486. DOI:10.3390/ijms23094486
- 29. IFA. Executive summary fertilizer outlook 20192023. Production & International Trade, Market Intelligence and Agriculture Services IFA Annual Conference, Montreal, Canada, 2019
- 30. Iftime M.M., Ailiesei G.L., Ungureanu E., Marin L. 2019. Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea controlled release and water retention. Carbohydrate Polymers, 223, 115040. DOI:10.1016/j.carbpol.2019.115040
- 31. Irfan S.A., Razali R., KuShaari K., Mansor N., Azeem B., Versypt A.N.F. 2018. A review of mathematical modeling and simulation of controlledrelease fertilizers. Journal of Controlled Release, 271, 45-54. DOI:10.1016/j.jconrel.2017.12.017
- 32. Kalia A., Sharma S.P., Kaur H., Kaur H. 2020. Novel nanocomposite-based controlled-release fertilizer and pesticide formulations: Prospects and challenges. In: Abd-Elsalam, K.A. (Ed). Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems. Elsevier. DOI:10.1016/C2019-0-01033-3
- 33. Katsumi N., Kasube T., Nagao S., Okochi H. 2021. Accumulation of microcapsules derived from coated fertilizer in paddy fields. Chemosphere, 267, 129185. DOI: 10.1016/j.chemosphere.2020.129185
- 34. Knijnenburg J.T.N., Kasemsiri P., Amornrantanaworn K., Suwanree S., Iamamornphan, W., Chindaprasirt P., Jetsrisuparb K. 2021. Entrapment of nano-ZnO into alginate/polyvinyl alcohol beads with different crosslinking ions for fertilizer applications. International Journal of Biological Macromolecules, 181, 349–356. DOI:10.1016/j.ijbiomac.2021.03.138
- 35. Kontárová S., Přikryl R., Škarpa P., Kriška T., Antošovský J., Gregušková Z., Figalla F., Jašek V., Sedlmajer M., Menčík P., Mikolajová M. 2022. Slow-release nitrogen fertilizers with biodegradable poly(3-hydroxybutyrate) coating: Their effect on the growth of maize and the dynamics of N release in soil. Polymers, 14, 20, 4323. DOI:10.3390/polym14204323
- 36. Kopittke P.M., Menzies N.W., Wang P., McKenna B.A., Lombi E. 2019. Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. DOI:10.1016/j.envint.2019.105078
- 37. Kumar Ch., Kotra V., Kumar N., Singh K. 2023. Biodiversity and bioresources: impact of biodiversity loss on agricultural sustainability. In: Singh, K.; Ribeiro, M.C. & Calicioglu, O. (Eds). Biodiversity and Bioeconomy Status Quo, Challenges, and Opportunities. Elsevier. DOI:10.1016/B978-0-323-95482-2.00008-0
- 38. Kwan A. and Davidov-Pardo G. 2018. Controlled release of flavor oil nanoemulsions encapsulated in filled soluble hydrogels. Food Chemistry, 250, 46–53. DOI:10.1016/j.foodchem.2017.12.089
- 39. Lal R. 2015. Restoring soil quality to mitigate soil degradation. Sustainability, 7(5), 5875–5895. DOI: 10.3390/su7055875
- 40. Lawrencia D., Wong S.K., Low D.Y.S., Goh B.H., Goh J.K., Ruktanonchai U.R., Tang S.Y. 2021. Controlled release fertilizers: A review on coating materials and mechanism of release. Plants, 10(2), 1–26. DOI:10.3390/plants10020238
- 41. Li, M., Cao, X., Liu, D., Fu Q., Li, T.; Shang, R. 2022. Sustainable management of agricultural water and land resources under changing climate and socioeconomic conditions: A multi-dimensional optimization approach. Agricultural Water Management, 259,107235, DOI:10.1016/j.agwat.2021.107235
- 42. Liu M., Liang R., Zhan F., Niu A. 2007. Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization. Polymer International, 56(6), 729–737. DOI:10.1002/pi.2196
- 43. Lu H., Dun C., Jariwala H., Wang R., Cui P., Zhang H., Dai Q., Yang S., Zhang H. 2022. Improvement of bio-based polyurethane and its optimal application in controlled release fertilizer. Journal of Controlled Release, 350, 748–760. DOI:10.1016/j.jconrel.2022.08.039
- 44. Lu H., Tian H., Liu Z., Zhang M., Zhao C., Guo Y., Guan R., Chen Q., Yu X., Wang H., Zheng L. 2019. Polyolefin wax modification improved characteristics of nutrient release from biopolymer-coated phosphorus fertilizers. ACS Omega, 4, 23, 2040220409. DOI:10.1021/acsomega.9b03348
- 45. Lubkowski, K. 2016. Environmental impact of fertilizer use and slow release of mineral nutrients as a response to this challenge. Polish Journal of Chemical Technology, 18(1), 72–79. DOI: 10.1515/pjct-2016-0012
- 46. Lubkowski K., Smorowska A., Grzmil B., Kozłowska 2015. A. Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of poly (butylene succinate) and dimerized fatty acid. Journal of Agricultural and Food Chemistry, 63, 2597–2605. DOI:10.1021/acs.jafc.5b00518
- 47. Lubkowski K., Smorowska A., Sawicka M., Wróblewska E., Dzienisz A., Kowlaska M., Sadłowski M. 2019. Ethylcellulose as a coating material in ontrolled-release fertilizers, Polish Journal of Chemical Technology, 21, 1, 52–58. DOI:10.2478/pjct-2019-0010
- 48. Lustosa Filho J.F., Barbosa C.F., da Silva Carneiro J.S., Azevedo Melo L.C. 2019. Diffusion and phosphorus solubility of biochar-based fertilizer: visualization, chemical assessment and availability to plants. Soil and Tillage Research, 194, 104298. DOI:10.1016/j.still.2019.104298
- 49. Ma X., Zhang S., Yang Y., Tong Z., Shen T., Yu Z., Xie J., Yao Y., Gao B., Li Y.C., Helal M.I.D. 2023. Development of multifunctional copper alginate and bio-polyurethane bilayer coated fertilizer: Controlled-release, selenium supply and antifungal. International Journal of Biological Macromolecules, 224, 226–256. DOI:10.1016/j.ijbiomac.2022.10.121
- 50. Madzokere T.C., Murombo L.T., Chiririwa H. 2021. Nano-based slow releasing fertilizers for enhanced agricultural productivity. Materials Today: Proceedings, 45, 3709–3715. DOI:10.1016/j.matpr.2020.12.674
- 51. Maghsoodi M.R., Najafi N., Reyhanitabar A., Oustan S. 2020. Hydroxyapatite nanorods, hydrochar, biochar, and zeolite for controlled-release urea fertilizers. Geoderma, 379, 114644. DOI:10.1016/j.geoderma.2020.114644
- 52. Majeed Z., Ramli N.K., Mansor N., Man Z. 2015. A comprehensive review on biodegradable polymers and their blends used in controlled-release fertilizer processes. Reviews in Chemical Engineering, 31. DOI:10.1515/revce-2014-0021
- 53. Martínez-Cano B., Mendoza-Meneses C. J., GarcíaTrejo J. F., Macías-Bobadilla G., Aguirre-Becerra H., Soto-Zarazúa G.M., Feregrino-Pérez A.A. 2022. Review and perspectives of the use of alginate as a polymer matrix for microorganisms applied in agroindustry. Molecules, 27(13), 4248. DOI:10.3390/molecules27134248
- 54. Martínez-Dalmau J., Berbel J., Ordóñez-Fernández R. 2021. Nitrogen fertilization. A review of the risks associated with the inefficiency of its use and policy responses. Sustainability, 13(10), 5625.DOI:10.3390/su13105625
- 55. Matson P.A., Naylor R., Ortiz-Monasterio I. 1998. Integration of environmental, agronomic and economic aspects of fertilizer management. Science, 280, 5360, 112–115. DOI:10.1126/science.280.5360.112
- 56. Mehmood A., Niazi M.B.K., Hussain A., Beig B., Jahan Z., Zafar N., Zia M. 2019. Slow-release urea fertilizer from sulfur, gypsum, and starch-coated formulations. Journal of Plant Nutrition, 42(10), 1218–1229. DOI:10.1080/01904167.2019.1609502
- 57. Merino D., Salcedo M.F., Mansilla Y., Casalongué C.A., Alvarez V.A. 2021. Development of sprayable sodium alginate-seaweed agricultural mulches with nutritional benefits for substrates and plants. Waste Biomass Valorization, 12, 54, 6035–6043. DOI:10.1007/s12649-021-01441-x
- 58. Mesias V. St D., Agu A.B.S., Benablo P.J.L., Chen Ch.-H., Penaloza D.Jr P. 2019. Coated NPK fertilizer based on citric acid-crosslinked chitosan/alginate encapsulant. Journal of Ecological Engineering, 20(11), 1–12. DOI:10.12911/22998993/113418
- 59. Mikula K., Izydorczyk G., Skrzypczak D., Mironiuk M., Moustakas K., Witek-Krowiak A., Chojnacka, K. 2020. Controlled release micronutrient fertilizers for precision agriculture - A review. Science of the Total Environment, 712, 136365. DOI:10.1016/j.scitotenv.2019.136365
- 60. Mitra S., Chakraborty A.J., Tareq A.M., Emran T.B., Nainu F., Khusro A., Idris, A.M., Khandaker M.U., Osman H., Alhumaydhi F.A., Simal-Gandara J. 2022. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University – Science, 34, 101865. DOI:10.1016/j.jksus.2022.101865
- 61. Moradi S., Babapoor A., Ghanbarlou S., Kalashgarani M.Y., Salahshoori I., Seyfaee A. 2024. Toward a new generation of fertilizers with the approach of controlled-release fertilizers: a review. Journal of Coatings Technology and Research. 21(1), 31–54. DOI:10.1007/s11998-023-00817-z
- 62. Mumtaz I., Majeed Z., Ajab Z., Ahmad B., Khurshid K., Mubashir M. 2019. Optimized tuning of rosin adduct with maleic anhydride for smart applications in controlled and targeted delivery of urea for higher plant’s uptake and growth efficiency. Industrial Crops and Products, 133, 395–408. DOI:10.1016/j.indcrop.2019.02.036
- 63. Mustafa A., Athar F., Khan I., Chattha M.U., Nawaz M., Shah A.N., Mahmood A., Batool M., Aslam M.T., Jaremko M., Abdelsalam N.R., Ghareeb R.Y., Hassan M.U. 2022. Improving crop productivity and nitrogen use efficiency using sulfur and zinccoated urea: A review. Frontiers in Plant Science. 13, 942384. DOI:10.3389/fpls.2022.942384
- 64. Naz M.Y., Sulaiman S.A. 2017. Attributes of natural and synthetic materials pertaining to slowrelease urea coating industry. Reviews in Chemical Engineering, 33(3), 293–308. DOI:10.1515/revce-2015-0065
- 65. Ni B., Liu M., Lu S., Xie L., Wang Y. 2011. Environmentally friendly slow-release nitrogen fertilizer. Journal of Agricultural and Food Chemistry. 59(18), 10169–10175. DOI:10.1021/jf202131z
- 66. Pan S.-Y., He K.-H., Lin K.-T., Fan Ch., Chang Ch.T. 2022. Addressing nitrogenous gases from croplands toward low-emission agriculture. npj Climate and Atmospheric Science, 5, 43. DOI: 10.1038/s41612-022-00265-3
- 67. Pang L., Gao Z., Feng H., Wang S., Wang Q. 2019. Cellulose based materials for controlled release formulations of agrochemicals: A review of modifications and applications. Journal of Controlled Release, 316, 28105–28115. DOI:10.1016/j.jconrel.2019.11.004
- 68. Peteiro C. 2018. Alginate production from marine macroalgae, with emphasis on kelp farming. In: Rehm B.H.A. and Moradali M.F. (Eds.) Alginates and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 11. Springer, Singapore. DOI:10.1007/978-981-10-6910-9_2
- 69. Ronga D., Caradonia F., Parisi M., Bezzi G., Parisi B., Allesina G., Pedrazzi S, Francia E. 2020. Using digestate and biochar as fertilizers to improve processing tomato production sustainability. Agronomy, 10(1), 1–14. DOI:10.3390/agronomy10010138
- 70. Roziafanto A.N., Puspitasari S., Cifriadi A., Hasnasoraya D., Chalid M. 2020. Addition of hybrid coupling agent based natural rubber-starch on natural rubber. Macromolecular Symposia, 391(1), 1900142. DOI:10.1002/masy.201900142
- 71. Sahu B.K., Swami K., Kapoor N., Agrawal A., Kataria S. 2024. Soil-mimetic eco-friendly fertilizer gates: nanoclay-reinforced binary carbohydrates for improving crop efficiency. Environmental Science: Nano, 2024.
- 72. Salimi M., Channab B.-E., El Idrissi A., Zahouily M., Motamedi E. 2023. Review A comprehensive review on starch: Structure, modification, and applications in slow/controlled-release fertilizers in agriculture. Carbohydrate Polymers, 322, 121326. DOI:10.1016/j.carbpol.2023.121326
- 73. Salimi M., Motamedi E., Motesharezedeh B., Hosseini H.M., Alikhani H.A. 2020. Starch-g-poly(acrylic acid-co-acrylamide) composites reinforced with natural char nanoparticles toward environmentally benign slow-release urea fertilizers. Journal of Environmental Chemical Engineering, 8(3), 103765. DOI:10.1016/j.jece.2020.103765
- 74. Sanderson K.R., Fillmore S.A.E., 2012. Slowrelease nitrogen fertilizer in carrot production on Prince Edward Island. Canadian Journal of Plant Science, 92, 1223–1228. DOI:10.4141/cjps2011-201.
- 75. Santos V.P., Marques N.S.S., Maia P.C.S.V., de Lima M.A.B., de Oliveira Franco L., De Campos-Takaki G.M. 2020. Seafood waste as attractive source of chitin and chitosan production and their applications. International Journal of Molecular Sciences, 21(12), 1–17. DOI:10.3390/ijms21124290
- 76. Sattari S.Z., Bouwman A.F., Giller K.E., van Ittersum M.K. 2012. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proceedings of the National Academy of Sciences, 109(16), 6348–6353. DOI:10.1073/pnas.1113675109
- 77. Shaviv A. 2001. Advances in controlled-release fertilizers. Advances in Agronomy, 71, 1–49. DOI: 10.1016/S0065-2113(01)71011-5
- 78. Shi W., Ju Y., Bian R., Li L., Joseph S., Mitchell D.R., Munroe P., Taherymoosavi S., Pan G. 2020. Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of The Total Environment, 701, 134424. DOI:10.1016/j.scitotenv.2019.134424
- 79. Shin H.J., Chao H.U., Park J.M. 2023. Alginate as a soil conditioner: Properties, mechanisms, and agricultural applications. Biotechnology and Bioprocess Engineering, 28(5), 734–749. DOI:10.1007/s12257-023-0206-1
- 80. Patil Sagar, S. 2023. Chapter – 2 Controlled and slow-release fertilizers. In: emerging trends in agriculture. Sciences Singh Y.V. (Ed.) Integrated Publications. India DOI:10.22271/int.book.237
- 81. Soltani A., Raeesi R., Taheri A., Deng A., Mirzababaei M. 2021. Improved shear strength performance of compacted rubberized clays treated with sodium alginate biopolymer. Polymers, 13(5), 764. DOI:10.3390/polym13050764
- 82. Song B., Liang H., Sun R., Peng P., Jiang Y., She D. 2020. Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. International Journal of Biological Macromolecules, 144, 219230. DOI:10.1016/j.ijbiomac.2019.12.082
- 83. Stanley N., Mahanty B. 2019. Preparation and characterization of biogenic CaCO3- reinforced polyvinyl alcohol-alginate hydrogel as controlled-release urea formulation. Polymer Bulletin, 77, 529–540. DOI:10.1007/s00289-019-02763-6
- 84. Sun M., Guo H., Zheng J., Wang Y., Liu X., Li Q., Wang R., Jia X. 2020. Hydrophobic octadecylamine-polyphenol film coated slow released urea via one-step spraying co-deposition. Polymer Testing, 91, 106831. DOI: 10.1016/j. polymertesting.2020.106831
- 85. Tahat M., Alananbeh M.K.M., Othman Y.A., Leskovar D.I. 2020. Soil health and sustainable agriculture. Sustainability, 12, 4859. DOI:10.3390/su12124859
- 86. Tian K., Xing Z., Kalkhajeh Y.K., Zhao T., Hu W., Huang B., Zhao Y. 2022. Excessive phosphorus inputs dominate soil legacy phosphorus accumulation and its potential loss under intensive greenhouse vegetable production system. Journal of Environmental Management, 303, 114149. DOI:10.1016/j.jenvman.2021.114149
- 87. Tomadoni B., Salcedo M.F., Mansilla A.Y., Casalongué C., Alvarez V.A. 2020. Macroporous alginate-based hydrogels to control soil substrate moisture: Effect on lettuce plants under drought stress. European Polymer Journal, 137, 109953. DOI:10.1016/j.eurpolymj.2020.109953
- 88. United Nations Department of Economic and Social Affairs, Population Division 2022. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3
- 89. Tong X., He X., Duan H., Han L., Huang G., 2018. Evaluation of Controlled Release Urea on the Dynamics of Nitrate, Ammonium, and Its Nitrogen Release in Black Soils of Northeast China. International Journal of Environmental Research and Public Health 15(119), 1–13. DOI:10.3390/ijerph15010119
- 90. Vashishtha M., Dongara P., Singh D. 2010. Improvement in properties of urea by phosphogypsum coating. International Journal of ChemTech Research, 2(1), 36–44.
- 91. Vudjung C. and Saengsuwan S. 2018. Biodegradable IPN hydrogels based on prevulcanized natural rubber and cassava starch as coating membrane for environment-friendly slow-release urea fertilizer. Journal of Polymers and the Environment, 26(10), 3967–3980. DOI:10.1007/s10924-018-1274-8
- 92. Wang Y., Guo H., Wang X., Ma Z., Li X., Li R., Li Q., Wang R., Jia X. 2020. Spout fluidized bed assisted preparation of poly(tannic acid)-coated urea fertilizer. ACS Omega, 5(2), 1127–1133. DOI: 10.1021/acsomega.9b03310
- 93. Wang T., Sun Ch., Yang Z. 2023. Climate change and sustainable agricultural growth in the Sahel region: Mitigating or resilient policy response? Heliyon, 9(9), e19839. DOI:10.1016/j.heliyon.2023.e19839
- 94. White paper - Adapting to climate change : towards a European framework for action {SEC(2009) 386} {SEC(2009) 387} {SEC(2009) 388} /*COM/2009/0147 final */
- 95. Xu Z., Guo, Y. 2023. Preparation and performance of degradable slow-release fertilizer coating material by a new ionic crosslinked hydrogel material. Journal of Environmental Chemical Engineering, 11(5), 110785. DOI:10.1016/j.jece.2023.110785
- 96. Yang Y.C., Zhang M., Li Y., Fan X.H., Geng Y.Q. 2012. Improving the quality of polymer-coated urea with recycled plastic, proper additives, and large tablets. Journal of Agricultural and Food Chemistry, 60(45), 11229–11237. DOI:10.1021/jf302813g
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-60408ea3-8d4c-452f-9800-afec195231cd