Warianty tytułu
Języki publikacji
Abstrakty
An exciting new window of opportunity has opened up for environmentally responsible farming with the advent of the nanotechnology era: the role of nanoparticles (NPs) to mitigate abiotic stresses. NPs have unique physiochemical characteristics that make them an attractive study subject. Rice growth and yield are severely inhibited by salinity, a major detrimental abiotic factor. However, the impact of NPs on rice seeds germination characteristics and physio-biochemical phenomena under salt stress conditions remains poorly understood. Accordingly, we intended to look at how zinc oxide nanoparticles (ZnO-NPs) affected germination processes and the early seedling stage while the rice plants (Kargi and CSR 30 rice genotypes) were put under salinity stress. Different germination characteristics parameters were considered, e.g., germination percentage (GP) relative seed germination rate (RGR), and seed vigour index (SVI) determined after eight days of treatment with ZnO-NPs at a concentration of 50 mg/L on rice seed. After passing the germination test, the seeds were placed in Hoagland hydroponic solution and given another week of ZnO-NPs treatment to evaluate the seedling growth and phyto-biochemical characteristics, such as shoot height and root length, inhibition percentage of shoot height and root length, chlorophyll and carotenoid stability index, chlorophyll and carotenoid inhibition percentage, malondialdehyde (MAD) content and antioxidant enzymatic activities (SOD, APX).This investigation demonstrated that 50 mg/L ZnO-NPs have the potential to alleviate the effect of salt stress on rice genotypes during the germination stage.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
142--156
Opis fizyczny
Bibliogr. 82 poz., rys., tab.
Twórcy
autor
- Department of Agricultural Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
autor
- Department of Agricultural Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
autor
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
autor
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, 391760, Gujarat, India
autor
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
autor
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
- Department of Biological Sciences, Al Hussein bin Talal University, P.O. Box 20, Maan, Jordan, abdel-al-tawaha@ahu.edu.jo
autor
- Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
autor
- Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
Bibliografia
- 1. Abdel Latef, A.A., 2010. Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Res. Commun. 38, 43–55. https://doi.org/10.1556/CRC.38.2010.1.5
- 2. Adhikary, S., Biswas, B., Chakraborty, D., Timsina, J., Pal, S., Chandra Tarafdar, J., Banerjee, S., Hossain, A., Roy, S., 2022. Seed priming with selenium and zinc nanoparticles modifies germination, growth, and yield of direct-seeded rice (Oryza sativa L.). Sci. Reports 2022 121 12, 1–14. https://doi.org/10.1038/s41598-022-11307-4
- 3. Alabdallah, N.M., Alzahrani, H.S., 2020. The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi J. Biol. Sci. 27, 3132–3137. https://doi.org/10.1016/J.SJBS.2020.08.005
- 4. Alenezi, N.A., Al-Qurainy, F., Tarroum, M., Nadeem, M., Khan, S., Salih, A.M., Shaikhaldein, H.O., Alfarraj, N.S., Gaafar, A.R.Z., Al-Hashimi, A., Alansi, S., 2022. Zinc Oxide Nanoparticles (ZnO NPs), Biosynthesis, Characterization and Evaluation of Their Impact to Improve Shoot Growth and to Reduce Salt Toxicity on Salvia officinalis In Vitro Cultivated. Process. 2022, Vol. 10, Page 1273 10, 1273. https://doi.org/10.3390/PR10071273
- 5. Ali, B., Saleem, M.H., Ali, S., Shahid, M., Sagir, M., Tahir, M.B., Qureshi, K.A., Jaremko, M., Selim, S., Hussain, A., Rizwan, M., Ishaq, W., Rehman, M.Z., 2022. Mitigation of salinity stress in barley genotypes with variable salt tolerance by application of zinc oxide nanoparticles. Front. Plant Sci. 0, 2850. https://doi.org/10.3389/FPLS.2022.973782
- 6. Ali, M.N., Ghosh, B., Gantait, S., Chakraborty, S., 2014. Selection of Rice Genotypes for Salinity Tolerance Through Morpho-Biochemical Assessment. Rice Sci. 21, 288–298. https://doi.org/10.1016/S1672-6308(13)60189-4
- 7. Ali, Q., Ashraf, M., 2011. Induction of Drought Tolerance in Maize (Zea mays L.) due to Exogenous Application of Trehalose: Growth, Photosynthesis, Water Relations and Oxidative Defence Mechanism. J. Agron. Crop Sci. 197, 258–271. https://doi.org/10.1111/J.1439-037X.2010.00463.X
- 8. Alloway, B.J., 2008. Micronutrients and crop production: An introduction. Micronutr. Defic. Glob. Crop Prod. 1–39. https://doi.org/10.1007/978-1-4020-6860-7_1
- 9. Amendola, V., Meneghetti, M., 2009. Size evaluation of gold nanoparticles by UV-vis spectroscopy. J. Phys. Chem. C 113, 4277–4285. https://doi.org/10.1021/JP8082425/SUPPL_FILE/JP8082425_SI_001.PDF
- 10. Ashraf, M., Akram, N.A., 2009. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnol. Adv. 27, 744–752. https://doi.org/10.1016/J.BIOTECHADV.2009.05.026
- 11. Assaha, D.V.M., Liu, L., Mekawy, A.M.M., Ueda, A., Nagaoka, T., Saneoka, H., 2015. Effect of salt stress on Na accumulation, antioxidant enzyme activities and activity of cell wall peroxidase of huckleberry (Solanum scabrum) and eggplant (Solanum melongena). Int. J. Agric. Biol. 17, 1149–1156. https://doi.org/10.17957/IJAB/15.0052
- 12. Assaha, D.V.M., Ueda, A., Saneoka, H., Al-Yahyai, R., Yaish, M.W., 2017. The Role of Na + and K+ Transporters in Salt Stress Adaptation in Glycophytes. Front. Physiol. 8. https://doi.org/10.3389/FPHYS.2017.00509
- 13. Awasthi, A., Bansal, S., Jangir, L.K., Awasthi, G., Awasthi, K.K., Awasthi, K., 2017. Effect of ZnO Nanoparticles on Germination of Triticum aestivum Seeds. Macromol. Symp. 376, 1700043. https://doi.org/10.1002/MASY.201700043
- 14. Burman, U., Saini, M., Kumar, P., 2013. Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol. Environ. Chem. 95, 605–612. https://doi.org/10.1080/02772248.2013.803796
- 15. Das, K., Roychoudhury, A., 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2, 53. https://doi.org/10.3389/FENVS.2014.00053/BIBTEX
- 16. Demiral, T., Türkan, I., 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 53, 247–257. https://doi.org/10.1016/J.ENVEXPBOT.2004.03.017
- 17. Dietz, K.J., Herth, S., 2011. Plant nanotoxicology. Trends Plant Sci. 16, 582–589. https://doi.org/10.1016/J.TPLANTS.2011.08.003
- 18. El-Badri, A.M., Batool, M., Mohamed, I.A.A., Wang, Z., Khatab, A., Sherif, A., Ahmad, H., Khan, M.N., Hassan, H.M., Elrewainy, I.M., Kuai, J., Zhou, G., Wang, B., 2021. Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage. Antioxidants 10. https://doi.org/10.3390/ANTIOX10081227
- 19. El-Shintinawy, F., El-Shourbagy, M.N., 2001. Alleviation of Changes in Protein Metabolism in NaCl-Stressed Wheat Seedlings by Thiamine. http://bp.ueb.cas.cz/doi/10.1023/A:1013738603020.html 44, 541–545. https://doi.org/10.1023/A:1013738603020
- 20. Elhaj Baddar, Z., Unrine, J.M., 2018. Functionalized-ZnO-Nanoparticle Seed Treatments to Enhance Growth and Zn Content of Wheat (Triticum aestivum) Seedlings. J. Agric. Food Chem. 66, 12166–12178. https://doi.org/10.1021/ACS.JAFC.8B03277/SUPPL_FILE/JF8B03277_SI_001.PDF
- 21. Faizan, M., Bhat, J.A., Chen, C., Alyemeni, M.N., Wijaya, L., Ahmad, P., Yu, F., 2021. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol. Biochem. PPB 161, 122–130. https://doi.org/10.1016/J.PLAPHY.2021.02.002
- 22. Garciá-López, J.I., Zavala-Garcia, F., Olivares-Saénz, E., Lira-Saldivar, R.H., Barriga-Castro, E.D., Ruiz-Torres, N.A., Ramos-Cortez, E., Vázquez-Alvarado, R., Ninõ-Medina, G., 2018. Zinc Oxide Nanoparticles Boosts Phenolic Compounds and Antioxidant Activity of Capsicum annuum L. during Germination. Agron. 2018, Vol. 8, Page 215 8, 215. https://doi.org/10.3390/AGRONOMY8100215
- 23. Gill, S.S., Tuteja, N., 2011. Cadmium stress tolerance in crop plants: Probing the role of sulfur. Plant Signal. Behav. 6, 215. https://doi.org/10.4161/PSB.6.2.14880
- 24. Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. PPB 48, 909–930. https://doi.org/10.1016/J.PLAPHY.2010.08.016
- 25. Gupta, B., Huang, B., 2014. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genomics 2014. https://doi.org/10.1155/2014/701596
- 26. H, U., 2017. Physiological impact of Zinc nanoparticle on germination of rice (Oryza sativa L) seed. J. Plant Sci. Phytopathol. 1, 062–070. https://doi.org/10.29328/JOURNAL.JPSP.1001008
- 27. Horie, T., Karahara, I., Katsuhara, M., 2012. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice 5, 1–18. https://doi.org/10.1186/1939-8433-5-11/figures/6
- 28. Hoshmand, A.R., 1994. Experimental research design and analysis : a practical approach for agriculture and natural sciences 408 p.
- 29. Itroutwar, P.D., Govindaraju, K., Tamilselvan, S., Kannan, M., Raja, K., Subramanian, K.S., 2019. Seaweed-Based Biogenic ZnO Nanoparticles for Improving Agro-morphological Characteristics of Rice (Oryza sativa L.). J. Plant Growth Regul. 2019 392 39, 717–728. https://doi.org/10.1007/S00344-019-10012-3
- 30. Itroutwar, P.D., Kasivelu, G., Raguraman, V., Malaichamy, K., Sevathapandian, S.K., 2020a. Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocatal. Agric. Biotechnol. 29, 101778. https://doi.org/10.1016/J.BCAB.2020.101778
- 31. Itroutwar, P.D., Kasivelu, G., Raguraman, V., Malaichamy, K., Sevathapandian, S.K., 2020b. Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocatal. Agric. Biotechnol. 29. https://doi.org/10.1016/J.BCAB.2020.101778
- 32. Khan, Z., Upadhyaya, H., 2019. Impact of Nanoparticles on Abiotic Stress Responses in Plants: An Overview. Nanomater. Plants, Algae Microorg. Concepts Controv. Vol. 2 305–322. https://doi.org/10.1016/B978-0-12-811488-9.00015-9
- 33. Khush, G.S., 2005. What it will take to Feed 5.0 Billion Rice consumers in 2030. Plant Mol. Biol. 2005 591 59, 1–6. https://doi.org/10.1007/S11103-005-2159-5
- 34. Kumar, P., Sharma, P.K., 2020. Soil Salinity and Food Security in India. Front. Sustain. Food Syst. 4, 174. https://doi.org/10.3389/FSUFS.2020.533781/BIBTEX
- 35. Lai, R.W.S., Yung, M.M.N., Zhou, G.J., He, Y.L., Ng, A.M.C., Djurišić, A.B., Shih, K., Leung, K.M.Y., 2020. Temperature and salinity jointly drive the toxicity of zinc oxide nanoparticles: a challenge to environmental risk assessment under global climate change. Environ. Sci. Nano 7, 2995–3006. https://doi.org/10.1039/D0EN00467G
- 36. Läuchli, A., Grattan, S.R., 2007. Plant Growth And Development Under Salinity Stress. Adv. Mol. Breed. Towar. Drought Salt Toler. Crop. 1–32. https://doi.org/10.1007/978-1-4020-5578-2_1
- 37. Lee, C.W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.C., Braam, J., Alvarez, P.J.J., 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 29, 669–675. https://doi.org/10.1002/ETC.58
- 38. Liu, J., Shabala, S., Shabala, L., Zhou, M., Meinke, H., Venkataraman, G., Chen, Z., Zeng, F., Zhao, Q., 2019. Tissue-specific regulation of Na+ and K+ transporters explains genotypic differences in salinity stress tolerance in rice. Front. Plant Sci. 0, 1361. https://doi.org/10.3389/FPLS.2019.01361
- 39. Liu, R., Zhang, H., Lal, R., 2016. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: Nanotoxicants or nanonutrients? Water. Air. Soil Pollut. 227, 1–14. https://doi.org/10.1007/S11270-015-2738-2/METRICS
- 40. Lowry, G. V., Avellan, A., Gilbertson, L.M., 2019. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522. https://doi.org/10.1038/S41565-019-0461-7
- 41. Mahender, A., Anandan, A., Pradhan, S.K., 2015. Early seedling vigour, an imperative trait for direct-seeded rice: an overview on physio-morphological parameters and molecular markers. Planta 2015 2415 241, 1027–1050. https://doi.org/10.1007/S00425-015-2273-9
- 42. Massange-Sánchez, J.A., Sánchez-Hernández, C.V., Hernández-Herrera, R.M., Palmeros-Suárez, P.A., 2021. The Biochemical Mechanisms of Salt Tolerance in Plants. https://doi.org/10.5772/INTECHOPEN.101048
- 43. Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9
- 44. Mogazy, A.M., Hanafy, R.S., 2022. Foliar Spray of Biosynthesized Zinc Oxide Nanoparticles Alleviate Salinity Stress Effect on Vicia faba Plants. J. Soil Sci. Plant Nutr. 2022 222 22, 2647–2662. https://doi.org/10.1007/S42729-022-00833-9
- 45. Moradi, F., Ismail, A.M., 2007. Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in RiceMoradi and Ismail – Responses of Rice to SalinityMoradi and Ismail – Responses of Rice to Salinity. Ann. Bot. 99, 1161–1173. https://doi.org/10.1093/AOB/MCM052
- 46. Natasha, N., Shahid, M., Bibi, I., Iqbal, J., Khalid, S., Murtaza, B., Bakhat, H.F., Farooq, A.B.U., Amjad, M., Hammad, H.M., Niazi, N.K., Arshad, M., 2022. Zinc in soil-plant-human system: A data-analysis review. Sci. Total Environ. 808, 152024. https://doi.org/10.1016/J.SCITOTENV.2021.152024
- 47. Oh, E., Yamaguchi, S., Kamiya, Y., Bae, G., Chung, W. Il, Choi, G., 2006. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J. 47, 124–139. https://doi.org/10.1111/J.1365-313X.2006.02773.X
- 48. Parida, A.K., Das, A.B., Sanada, Y., Mohanty, P., 2004. Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquat. Bot. 2, 77–87. https://doi.org/10.1016/J.AQUABOT.2004.07.005
- 49. Pérez-Hernández, G., Vega-Poot, A., Pérez-Juárez, I., Camacho, J.M., Arés, O., Rejón, V., Peña, J.L., Oskam, G., 2012. Effect of a compact ZnO interlayer on the performance of ZnO-based dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 100, 21–26. https://doi.org/10.1016/J.SOLMAT.2011.05.012
- 50. Prakash, V., Rai, P., Sharma, N.C., Singh, V.P., Tripathi, D.K., Sharma, S., Sahi, S., 2022. Application of zinc oxide nanoparticles as fertilizer boosts growth in rice plant and alleviates chromium stress by regulating genes involved in oxidative stress. Chemosphere 303, 134554. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134554
- 51. Rahneshan, Z., Nasibi, F., Moghadam, A.A., 2018. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. http://mc.manuscriptcentral.com/tjpi 13, 73–82. https://doi.org/10.1080/17429145.2018.1424355
- 52. Rajput, V.D., Minkina, T., Fedorenko, A., Chernikova, N., Hassan, T., Mandzhieva, S., Sushkova, S., Lysenko, V., Soldatov, M.A., Burachevskaya, M., 2021. Effects of Zinc Oxide Nanoparticles on Physiological and Anatomical Indices in Spring Barley Tissues. Nanomater. 2021, Vol. 11, Page 1722 11, 1722. https://doi.org/10.3390/NANO11071722
- 53. Rakgotho, T., Ndou, N., Mulaudzi, T., Iwuoha, E., Mayedwa, N., Ajayi, R.F., 2022. Green-Synthesized Zinc Oxide Nanoparticles Mitigate Salt Stress in Sorghum bicolor. Agric. 12, 597. https://doi.org/10.3390/AGRICULTURE12050597/S1
- 54. Rossi, L., Fedenia, L.N., Sharifan, H., Ma, X., Lombardini, L., 2019. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol. Biochem. PPB 135, 160–166. https://doi.org/10.1016/J.PLAPHY.2018.12.005
- 55. Saleh, T.A., 2020. Nanomaterials: Classification, properties, and environmental toxicities. Environ. Technol. Innov. 20, 101067. https://doi.org/10.1016/J.ETI.2020.101067
- 56. Sarkhosh, S., Kahrizi, D., Darvishi, E., Tourang, M., Haghighi-Mood, S., Vahedi, P., Ercisli, S., 2022. Effect of Zinc Oxide Nanoparticles (ZnO-NPs) on Seed Germination Characteristics in Two Brassicaceae Family Species: Camelina sativa and Brassica napus L. J. Nanomater. 2022, 1–15. https://doi.org/10.1155/2022/1892759
- 57. Sharma, D., Afzal, S., Singh, N.K., 2021. Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. J. Biotechnol. 336, 64–75. https://doi.org/10.1016/J.JBIOTEC.2021.06.014
- 58. Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M., 2012. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 1–26. https://doi.org/10.1155/2012/217037
- 59. Shu, K., Qi, Y., Chen, F., Meng, Y., Luo, X., Shuai, H., Zhou, W., Ding, J., Du, J., Liu, J., Yang, F., Wang, Q., Liu, W., Yong, T., Wang, X., Feng, Y., Yang, W., 2017. Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Front. Plant Sci. 8, 1372. https://doi.org/10.3389/FPLS.2017.01372/BIBTEX
- 60. Singh, A., Sengar, R.S., Rajput, V.D., Minkina, T., Singh, R.K., 2022. Zinc Oxide Nanoparticles Improve Salt Tolerance in Rice Seedlings by Improving Physiological and Biochemical Indices. Agric. 2022, Vol. 12, Page 1014 12, 1014. https://doi.org/10.3390/AGRICULTURE12071014
- 61. Singh, A., Singh, N.B., Hussain, I., Singh, H., Yadav, V., Singh, S.C., 2016. Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J. Biotechnol. 233, 84–94. https://doi.org/10.1016/J.JBIOTEC.2016.07.010
- 62. Singh, P., Arif, Y., Siddiqui, H., Sami, F., Zaidi, R., Azam, A., Alam, P., Hayat, S., 2021. Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. Ecotoxicol. Environ. Saf. 213, 112020. https://doi.org/10.1016/J.ECOENV.2021.112020
- 63. Singh, V.K., Singh, R., Tripathi, S., Devi, R.S., Srivastava, P., Singh, P., Kumar, A., Bhadouria, R., 2020. Seed priming: state of the art and new perspectives in the era of climate change. Clim. Chang. Soil Interact. 143–170. https://doi.org/10.1016/B978-0-12-818032-7.00006-0
- 64. Soltabayeva, A., Ongaltay, A., Omondi, J.O., Srivastava, S., 2021. Morphological, Physiological and Molecular Markers for Salt-Stressed Plants. Plants 2021, Vol. 10, Page 243 10, 243. https://doi.org/10.3390/PLANTS10020243
- 65. Spielman-Sun, E., Avellan, A., Bland, G.D., Tappero, R. V., Acerbo, A.S., Unrine, J.M., Giraldo, J.P., Lowry, G. V., 2019. Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. Environ. Sci. Nano 6, 2508–2519. https://doi.org/10.1039/C9EN00626E
- 66. Syu, Y. yu, Hung, J.H., Chen, J.C., Chuang, H. wen, 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol. Biochem. 83, 57–64. https://doi.org/10.1016/J.PLAPHY.2014.07.010
- 67. Takagi, H., Yamada, S., 2013. Roles of enzymes in anti-oxidative response system on three species of chenopodiaceous halophytes under NaCl-stress condition. https://doi.org/10.1080/00380768.2013. 809600 59, 603–611. https://doi.org/10.1080/00380768.2013.809600
- 68. Tian, Y., Guan, B., Zhou, D., Yu, J., Li, G., Lou, Y., 2014. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.). Sci. World J. 2014. https://doi.org/10.1155/2014/834630
- 69. Tondey, M., Kalia, A., Singh, A., Abd-Elsalam, K., Hassan, M.M., Dheri, G.S., 2022. A comparative evaluation of the effects of seed invigoration treatments with precursor zinc salt and nano-sized zinc oxide (ZnO) particles on vegetative growth, grain yield, and quality characteristics of Zea mays. J. Anal. Sci. Technol. 13, 1–14. https://doi.org/10.1186/S40543-022-00346-1/figures/4
- 70. Torfeh, A.H., Latifeh, P., Fatemeh, R., Hadi, A., 2020. Effects Of Zno Nps On Phenolic Compounds Of Rapeseed Seeds Under Salinity Stress.
- 71. Tripathi, D.K., Singh, Shweta, Singh, Swati, Mishra, S., Chauhan, D.K., Dubey, N.K., 2015. Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiol. Plant. 37, 1–14. https://doi.org/10.1007/S11738-015-1870-3/METRICS
- 72. Van Zelm, E., Zhang, Y., Testerink, C., 2020. Salt Tolerance Mechanisms of Plants. https://doi.org/10.1146/annurev-arplant-050718-10000571, 403–433. https://doi.org/10.1146/ANNUREV-ARPLANT-050718-100005
- 73. Wang, Z., Li, Hui, Li, X., Xin, C., Si, J., Li, S., Li, Y., Zheng, X., Li, Huawei, Wei, X., Zhang, Z., Kong, L., Wang, F., 2020. Nano-ZnO priming induces salt tolerance by promoting photosynthetic carbon assimilation in wheat. Arch. Agron. Soil Sci. 66, 1259–1273. https://doi.org/10.1080/03650340.2019.1663508
- 74. Xiang, L., Zhao, H.M., Li, Y.W., Huang, X.P., Wu, X.L., Zhai, T., Yuan, Y., Cai, Q.Y., Mo, C.H., 2015. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res. 22, 10452–10462. https://doi.org/10.1007/S11356-015-4172-9/METRICS
- 75. Xu, S., Zhou, Y., Wang, P., Wang, F., Zhang, X., Gu, R., 2016. Salinity and temperature significantly influence seed germination, seedling establishment, and seedling growth of eelgrass Zostera marina L. PeerJ 2016. https://doi.org/10.7717/PEERJ.2697/SUPP-1
- 76. Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., Yang, P., 2006. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Elem. Res. 110, 179–190. https://doi.org/10.1385/BTER:110:2:179
- 77. Yasmin, H., Mazher, J., Azmat, A., Nosheen, A., Naz, R., Hassan, M.N., Noureldeen, A., Ahmad, P., 2021. Combined application of zinc oxide nanoparticles and biofertilizer to induce salt resistance in safflower by regulating ion homeostasis and antioxidant defence responses. Ecotoxicol. Environ. Saf. 218, 112262. https://doi.org/10.1016/J.ECOENV.2021.112262
- 78. Zafar, S., Akhtar, M., Perveen, S., Hasnain, Z., Khalil, A., 2020. Attenuating the adverse aspects of water stress on wheat genotypes by foliar spray of melatonin and indole-3-acetic acid. Physiol. Mol. Biol. Plants 26, 1751–1762. https://doi.org/10.1007/S12298-020-00855-6
- 79. Zafar, S., Hasnain, Z., Aslam, N., Mumtaz, S., Jaafar, H.Z.E., MegatWahab, P.E., Qayum, M., Ormenisan, A.N., 2021. Impact of Zn Nanoparticles Synthesized via Green and Chemical Approach on Okra (Abelmoschus esculentus L.) Growth under Salt Stress. Sustain. 2021, Vol. 13, Page 3694 13, 3694. https://doi.org/10.3390/SU13073694
- 80. Zafar, S., Perveen, S., Khan, M.K., Shaheen, M.R., Hussain, R., Sarwar, N., Rashid, S., Nafees, M., Farid, G., Alamri, S., Shah, A.A., Javed, T., Irfan, M., Siddiqui, M.H., 2022. Effect of zinc nanoparticles seed priming and foliar application on the growth and physio-biochemical indices of spinach (Spinacia oleracea L.) under salt stress. PLoS One 17, e0263194. https://doi.org/10.1371/JOURNAL.PONE.0263194
- 81. Zeng, L., Shannon, M.C., 2000. Salinity effects on seedling growth and yield components of rice. Crop Sci. 40, 996–1003. https://doi.org/10.2135/CROPSCI2000.404996X
- 82. Zhang, Haipeng, Wang, R., Chen, Z., Cui, P., Lu, H., Yang, Y., Zhang, Hongcheng, 2021. The effect of zinc oxide nanoparticles for enhancing rice (Oryza sativa L.) yield and quality. Agric. 2021, Vol. 11, Page 1247 11, 1247. https://doi.org/10.3390/AGRICULTURE11121247
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-603b57e8-815f-4fdb-984b-3c9b4e9c26c9