Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 36, no. 2 | 67--85
Tytuł artykułu

Chromatographic methods and approaches for bioequivalence study, drug screening and enantioseparation of indapamide

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Indapamide (Indp) and certain other diuretics have been abused in sports, therefore, having sensitive methods for its detection and assay in biological fluids (whole blood, plasma, serum, and urine) is of significant importance. The racemic mixture of Indp is being used as an active pharmaceutical ingredient among other commonly prescribed diuretics. The regulatory authorities and pharmaceutical industries demand analytical methods for successful enantioseparation of such molecules. The paper presents a critical overview of the scientific issues of the application of contemporary techniques involving various chromatographic approaches (with liquid or supercritical fluid as mobile phases) and capillary electrophoresis and method development, for drug screening, assay, bioequivalence studies and enantioseparation of indapamide with their results. It also covers the historical developments that led to significant breakthroughs in research and concise evaluations of research in the area. Different types of chromatographic methods (HPLC, CEC, SFC etc) discussed herein provide an insight and a choice to select a method to (i) screen Indp for drug abuse, (ii) separate, isolate and quantify the enantiomers of Indp and (iii) investigate their pharmacokinetics as markedly different species and not as a total drug. The article evaluates the field’s status with a broad base and practical oriented approach so that the underlying principles are easily understood to help chemists and nonspecialists gain useful insights into the field outside their specialization and provide experts with summaries of key developments. To the best of authors’ knowledge there has been no attempt to review such methods for analysis of Indp and this is the first report of its kind.
Wydawca

Rocznik
Strony
67--85
Opis fizyczny
Bibliogr. 78 poz., rys., wykr.
Twórcy
  • Department of Chemistry, School of Engineering and Sciences, GD Goenka University, Gurgaon, 122103, Haryana, India, sonikabatra211@gmail.com
  • Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26129, Oldenburg, Germany
  • Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26129, Oldenburg, Germany
  • Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
Bibliografia
  • 1. Chaffman,M.; Heel, R. C.; Brodgen, R. N.; Speight, T. M.; Avery, G. S. Indapamide: a review of its pharmacodynamic properties and therapeutic efficacy in hypertension. Drugs 1984, 28, 189–235. https://doi.org/10.2165/00003495-198428030-00001.
  • 2. FDA’s policy statement for the development of new stereoisomeric drugs, Chirality 1992, 4, 338–40. https://doi.org/10.1002/chir.530040513.
  • 3. EMA Investigation of chiral active substances (human) European Medicines Agency, 2018. [cited 2022 Jul 25]. Available from: https://www.ema.europa.eu/en/investigation-chiral-active-substances.
  • 4. Patil, N. B.; Patil, K. B.; Wagh, M. N.; Patil, A. A. A review on analytical method for determination of indapamide in marketem pharmaceutical preparation. Pharma Tutor 2018, 6, 79–88. https://doi.org/10.29161/PT.v6.i12.2018.79.
  • 5. Tero-Vescan, A.; Hancu, G.; Oroian, M.; Cârje, A. Chiral separation of indapamide enantiomers by capillary electrophoresis. Adv. Pharm. Bull. 2014, 4, 267–72. https://doi.org/10.5681/apb.2014.039.
  • 6. Bataillard, A.; Schiavi, P.; Sassard, J. Pharmacological properties of indapamide: rationale for use in hypertension. Clin. Pharmacokinet. 1999, 37(Supplement 1), 7–12. https://doi.org/10.2165/00003088-199937001-00002.
  • 7. Uehara, Y.; Shirahase, H.; Nagata, T.; Ishimitsu, T.; Morishita, S.; Osumi, S.; Matsuoka, H.; Sugimoto, T. Radical scavengers of indapamide in prostacyclin synthesis in rat smooth muscle cell. Hypertension 1990, 15, 216–24. https://doi.org/10.1161/01.HYP.15.2.216.
  • 8. Choi, R. L.; Rosenberg, M. E.; Grebow, P.; Huntley, T. E. Highperformance liquid chromatographic analysis of indapamide (RHC 2555) in urine, plasma and blood. J. Chromatogr. 1982, 230, 181–7. https://doi.org/10.1016/s0378-4347(00)81447-4.
  • 9. Brent Miller, R.; Dadgar, D.; Lalande, M. High-performance liquid chromatographic method for the determination of indapamide In human whole blood. J. Chromatogr. 1993, 614, 293–8. https://doi.org/10.1016/0378-4347(93)80321-T.
  • 10. Legorburu, M. J.; Alonso, R. M.; Jimenez, R. M.; Ortiz, E. Quantitative determination of indapamide in pharmaceuticals and urine by high-performance liquid chromatography with amperometric detection. J. Chromatogr. Sci. 1999, 37, 283–7. https://doi.org/10.1093/chromsci/37.8.283.
  • 11. Pietta, P.; Calatroni, A.; Rava, A. High-performance liquid chromatographic assay for monitoring indapamide and its major metabolite in urine. J. Chromatogr. B. 1982, 228, 377–81. https://doi.org/10.1016/S0378-4347(00)80458-2.
  • 12. Hang, T.-J.; Zhao, W.; Liu, J.; Song, M.; Xie, Y.; Zhang, Z.; Shen, J.; Zhang, Y. A selective HPLC method for the determination of indapamide in human whole blood: application to a bioequivalence study in Chinese volunteers. J. Pharm. Biomed. Anal. 2006, 40, 202–5. https://doi.org/10.1016/j.jpba.2005.06.035.
  • 13. Ventura, R.; Segura, J. Detection of diuretic agents in doping control. J. Chromatogr. B 1996, 687, 127–44. https://doi.org/10.1016/S0378-4347(96)00279-4.
  • 14. Ja Park, S.; Pyo, H.-S.; Kim, Y.-J.; Kim, M.-S.; Park, J. Systematic analysis of diuretic doping agents by HPLC screening and GC/MS confirmation. J. Anal. Toxicol. 1990, 14, 84–90. https://doi.org/10.1093/jat/14.2.84.
  • 15. Lisi, A. M.; Kazlauskas, R.; Trout, G. J. Diuretic screening in human urine by gas chromatography-mass spectrometry: use of a macroreticular acrylic copolymer for the efficient removal of the coextracted phase-transfer reagent after derivatization by direct extractive alkylation. J. Chromatogr. B. 1992, 581, 57–63. https://doi.org/10.1016/0378-4347(92)80447-X.
  • 16. Amendola, L.; Colamonici, C.; Mazzarino, M.; Botre, F. Rapid determination of diuretics in human urine by gas chromatography–mass spectrometry following microwave assisted derivatization. Anal. Chim. Acta 2003, 475, 125–36. https://doi.org/10.1016/S0003-2670(02)01223-0.
  • 17. Zendelovska, D.; Stafilov, T.; Stefova, M. Optimization of a solidphase extraction method for determination of indapamide in biological fluids using high-performance liquid chromatography. J. Chromatogr. B. 2003, 788, 199–206. https://doi.org/10.1016/S1570-0232(02)01017-6.
  • 18. Deventer, K.; Delbeke, F. T.; Roels, K.; Eenoo, P. V. Screening for 18 diuretics and probenecid in doping analysis by liquid chromatography–tandem mass spectrometry. Biomed. Chromatogr. 2002, 16, 529–35. https://doi.org/10.1002/bmc.201.
  • 19. Cooper, S. F.; Massé, R.; Dugal, R. Comprehensive screening procedure for diuretics in urine by high-performance liquid chromatography. J. Chromatogr. B. 1989, 489, 65–88. https://doi.org/10.1016/S0378-4347(00)82884-4.
  • 20. Tsai, F. Y.; Lui, L. F.; Chang, B. Analysis of diuretic doping agents by HPLC screening and GC-MSD confirmation. J. Pharm. Biomed. Anal.1991, 9, 1069–76. https://doi.org/10.1016/0731-7085(91)80046-C.
  • 21. Carreras, D.; Imaz, C.; Navajas, R.; Garcia, M. A.; Rodriguez, C.; Rodriguez, A. F.; Cortes, R. Comparison of derivatization procedur es for the determination of diuretics in urine by gas chromatography-mass spectrometry. J. Chromatogr. A. 1994, 683, 195–202. https://doi.org/10.1016/S0021-9673(94)89116-8.
  • 22. Goebel, C.; Trout, G.; Kazlauskas, R. Rapid screening method for diuretics in doping control using auto-mated solid phase extraction and liqud chromatography-electrospray tandem mass spectrometry. Analytica Chim. Acta 2004, 502, 65–74. https://doi.org/10.1016/j.aca.2003.09.062.
  • 23. Albu, F.; Georgita, C.; David, V.; Medvedovici, A. Liquid chromatography-electrospray tandem mass spectrometry method for determination of indapamide in serum for single/multiple dose bioequivalence studies of sustained release formulations. J. Chromatogr. B. 2005, 816, 35–40. https://doi.org/10.1016/j.jchromb.2004.11.002.
  • 24. Gao, X. L.; Chen, J.; Mei, N.; Tao, W. X.; Jiang, W. M.; Jiang, X. G. HPLC determination and pharmacokinetic study of indapamide In human whole blood. Chromatographia 2005, 61, 581–5. https://doi.org/10.1365/S10337-005-0548-1.
  • 25. Jain, D. S.; Subbaiah, G.; Sanyal, M.; Pande, U. C.; Shrivastav, P. Liquid chromatography–tandem mass spectrometry validated method for the estimation of indapamide in human whole blood. J. Chromatogr. B. 2006, 834, 149–54. https://doi.org/10.1016/j.jchromb.2006.02.040.
  • 26. Ding, L.; Yang, L.; Liu, F.; Ju, W.; Xiong, N. A sensitive LC-ESI-MS method for the determination of indapamide in human plasma: method and clinical applications. J. Pharm. Biomed. Anal. 2006, 42, 213–7. https://doi.org/10.1016/j.jpba.2006.03.039.
  • 27. Ates¸, Z.; Özden, T.; Özilhan, S.; Eren, S. Improved ultra-performance LC determination of indapamide in human plasma Acta Chromatographica 2007, 66, 119–22. https://doi.org/10.1365/s10337-007-0300-0.
  • 28. Li, G.; Zhang, X.; Tian, Y.; Zhang, Z.; Rui, J.; Chu, X. Pharmacokinetics and bioequivalence study of two indapamide formulations after single dose administration in healthy Chinese male volunteers. Drug Res. 2013, 63, 13–8. https://doi.org/10.1055/s-0032-1331181.
  • 29. Nakov, N.; Mladenovska, K.; Labacevski, N.; Dimovski, A.; Petkovska, R.; Dimitrovska, A.; Kavrakovski, Z. Development and validation of automated SPE-LC-MS/MS method for determination of indapamide in human whole blood and its application to Real study samples. Biomed. Chromatogr. 2013, 27, 1540–6. https://doi.org/10.1002/bmc.2957.
  • 30. Ramkumar, A.; Ponnusamy, V. K.; Jen-Fon, J. Rapid determination of indapamide in human urine using novel low-density solvent based ultrasound assisted emulsification microextraction coupled with high performance liquid chromatography-variable wavelength detection. Anal. Methods 2013, 5, 2572. https://doi.org/10.1039/c3ay40187a.
  • 31. Regueiro, J.; Llompart, M.; Garcia-Jares, C.; Garcia-Monteagudo, J. C.; Cela, R. Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters. J. Chromatogr. A. 2008, 1190, 27–38. https://doi.org/10.1016/j.chroma.2008.02.091.
  • 32. Pinto, G. A.; Pastre, K. I. F.; Bellorio, K. B.; deSouza Teixeira, L.; Carlo deSouza, W.; deAbreu, F. C.; Cardoso, F. F. deS. e S.; Pianetti, G. A.; César, I. C. An improved LC-MS/MS method for quantitation of indapamide in whole blood: application for a bioequivalence study. Biomed. Chromatogr. 2014, 28, 1212–8. https://doi.org/10.1002/bmc.3148.
  • 33. Chen, W.; Liang, Y.; Zhang, H.; Xiong, H. Y.; Xie, W. G. Simple, sensitive and rapid LC-MS method for the indapamide in human plasma- application to pharmacokinetic. J. Chromatogr. B. 2006, 842, 58–63. https://doi.org/10.1016/j.jchromb.2006.03.024.
  • 34. Morihisa, H.; Fukata, F.; Muro, H.; Nishimura, K.-I.; Makino, T. Determination of indapamide in human serum using 96-well solid-phase extraction and high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). J. Chromatogr. B. 2008, 870, 126–30. https://doi.org/10.1016/j.jchromb.2008.05.042.
  • 35. Tang, J.; Li, J.; Sun, J.; Yin, J.; He, Z. Rapid and sensitive determination of indapamide in human blood by liquid chromatography with electrospray ionization mass spectrometric detection: application to a bioequivalence study. Pharmazie 2005, 60, 819–22.
  • 36. Tao, Y.; Wang, S.; Wang, L.; Song, M.; Hanga, T. Simultaneous determination of indapamide, perindopril and perindoprilat In human plasma or whole blood by UPLC-MS/MS and its pharmacokinetic application. J. Pharm. Anal 2018, 8, 333–40. https://doi.org/10.1016/j.jpha.2018.05.004.
  • 37. Mancia, G.; Laurent, S.; Agabiti-Rosei, E.; Ambrosioni, E.; Burnier,M.; Caulfield, M. J.; Cifkova, R.; Clement, D.; Coca, A.; Dominiczak, A.; Erdine, S.; Fagard, R.; Farsang, C.; Grassi, G.; Haller, H.; Heagerty, A.; Kjeldsen, S. E.; Kiowski, W.;Mallion, J.M.;Manolis, A.;Narkiewicz, K.; Nilsson, P.; Olsen, M. H.; Rahn, K. H.; Redon, J.; Rodicio, J.;Ruilopea, L.; Schmieder, R. E.; Struijker-Boudier, H. A. J.; van Zwieten, P. A.; Viigimaa, M.; Zanchetti, A. Reappraisal of European guidelines on hypertension management: a European Society of hypertension task force document. J. Hypertens. 2009, 27, 2121–58. https://doi.org/10.1097/HJH.0b013e328333146d.
  • 38. Nedogoda, S. V.; Stojanov, V. J. Single-pill combination of perindopril/indapamide/amlodipine in patients with uncontrolled hypertension: a randomized controlled trial. Cardiol. Ther. 2017, 6, 91–104. https://doi.org/10.1007/s40119-017-0085-7.
  • 39. Rezk, M.; Badr, K. A. Determination of amlodipine, indapamide and perindopril in human plasma by a novel LC-MS/MS method; Application to a bioequivalence study. Biomed. Chromatogr. 2020, 35, e5048. https://doi.org/10.1002/bmc.5048.
  • 40. van Eeckhaut, A.; Lanckmans, K.; Sarre, S.; Smolders, I.; Michotte, Y. Validation of bioanalytical LC-MS/MS assays: evaluation of matrix effects. J. Chromatogr. B. 2009, 877, 2198–207. https://doi.org/10.1016/j.jchromb.2009.01.003.
  • 41. Macfadyen, R. J.; Lees, K. R.; Reid, J. L. Perindopril. A review of its pharmacokinetics and clinical pharmacology. Drugs 1990, 39 (Suppl 1), 49–63. https://doi.org/10.2165/00003495-199000391-00009.
  • 42. Vincent, M.; Marchand, B.; Rémond, G.; Jaguelin-Guinamant, S.; Damien, G.; Portevin, B.; Baumal, J. Y.; Volland, J. P.; Bouchet, J. P.; Lambert, P. H. Synthesis and ACE inhibitory activity of the stereoisomers of perindopril (S 9490) and perindoprilate (S 9780). Drug Des. Discov. 1992, 9, 11–28.
  • 43. Okamoto, Y.; Yashima, E. Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem. Int. Ed. Engl. 1998, 37, 1020–43. https://doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1020::AID-ANIE1020>3.0.CO;2-5.
  • 44. Yashima, E. Polysaccharide-based chiral stationary phases for high performance liquid chromatographic enantioseparation. J. Chromatogr. A. 2001, 906, 105–25. https://doi.org/10.1016/S0021-9673(00)00501-X.
  • 45. Penmetsa, K. V.; Reddick, C. D.; Fink, S. W.; Kleintop, B. L.; DiDonato, G. C.; Volk, K. J.; Klohr, S. E. Development of reversedphase chiral HPLC methods using mass spectrometry compatible mobile phases. J. Liq. Chrom. & Rel. Technol. 2000, 23, 831–9. https://doi.org/10.1081/JLC-100101492.
  • 46. Du, B.; Pang, L.; Li, H.; Ma, S.; Li, Y.; Jia, X.; Zhang, Z. Chiral liquid chromatography resolution and stereoselective pharmacokinetic study of indapamide enantiomers in rats. J. Chromatogr. B 2013, 932, 88–91. https://doi.org/10.1016/j.jchromb.2013.06.007.
  • 47. Pirkle, W. H.; Welch, C. J. An improved chiral stationary phase for the chromatographic separation of underivatized naproxen enantiomers. J. Liq. Chromatogr. 1992, 15, 1947–55. https://doi.org/10.1080/10826079208020869; (W.H. Pirkle, C.J. Welch, B Lamm, Design, synthesis, and evaluation of an improved enantioselective naproxen selector, J. Org. Chem. 57 (1992) 3854-3860.https://doi.org/10.1021/jo00040a026).
  • 48. Pirkle, W. H.; Welch, C. J. Use of simultaneous face to face and face to edge π-π interactions to facilitate chiral recognition. Tetrahedron Asymmetry 1994, 5, 777–80. https://doi.org/10.1016/S0957-4166(00)86225-4.
  • 49. Welch, C. J.; Szczerba, T.; Perrin, S. R. Some recent high-performance liquid chromatography separations of the enantiomers of pharmaceuticals and other compounds using the Whelk-O 1 chiral stationary phase. J. Chromatogr. 1997, 758, 93–8. https://doi.org/10.1016/s0021-9673(96)00569-9.
  • 50. Cârje, A. G., Ion, V., Muntean, D.-L., Hancu, G., Balint, A., Imre, S., Enantioseparation of indapamide by high performance liquid chromatography using ovomucoid glycoprotein as chiral selector. Farmacia 64 (2016) 181–6 (A. G. Cârje, V. Ion, D.-L. Muntean, G. Hancu, A. Balint, V. Ion, S. Imre; Simultaneous chiral separation of perindopril erbumine and indapamide enantiomers by high performance liquid chromatography, Farmacia. 2017, Vol. 65 (2007) 900-907).
  • 51. Cyclobond Handbook: A Guide to Using Cyclodextrin Bonded Phases for Chiral LC Separations, Advanced Separation Technologies, seventh ed., Whippany, NJ, 2005. Available from: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/169/815/cyclobond_handbook.pdf.
  • 52. Armstrong, D. W.; Stalcup, A. M.; Hilton, M. L.; Duncan, J. D.; Faulkner, J. R. Jr.; Chang, S.-C. Derivatized cyclodextrins for normal-phase liquid chromatographic separation of enantiomers. Anal. Chem. 1990, 62, 1610– 5. https://doi.org/10.1021/ac00214a014.
  • 53. Okamoto, Y.; Aburatani, R.; Hatada, K. Chromatographic Chirac resolution: XIV. Cellulose tribenzoate derivatives as chiral stationary phases for high-performance liquid chromatography. J. Chromatogr. 1987, 389, 95–102. https://doi.org/10.1016/S0021-9673(01)94414-0.
  • 54. Okamoto, Y.; Aburatani, R.; Hatada, K. Direct chromatographic separation of 2-arylpropionic acid enantiomers using tris(3,5-dimethylphenylcarbamate)s of cellulose and amylose as chiral stationaryphases. Chirality 1989, 1, 239–42. https://doi.org/10.1002/chir.530010310.
  • 55. Armstrong, D. W.; Chang, C.-D.; Lee, S. H. (R)-and (S)-Naphthylethylcarbamate-substituted β-cyclodextrin bonded stationary phases for the reversed-phase liquid chromatographic separation ofenantiomers. J. Chromatogr. 1991, 539, 83–90. https://doi.org/10.1016/S0021-9673(01)95362-2.
  • 56. Zhong, Q.; He, L.; Beesley, T. E.; Trahanovsky, W. S.; Sun, P.; Wang, C.; Armstrong, D. W. Development of dinitrophenylated cyclodextrin derivatives for enhanced enantiomeric separations byhigh-performance liquid chromatography. J. Chromatogr. A. 2006, 1115, 19–45. https://doi.org/10.1016/j.chroma.2006.02.065.
  • 57. Qi Wang, R.; Ong, T.-T.; Tang, W.; Ng, S.-C. Cationic cyclodextrins chemically-bonded chiral stationary phases for high-performance liquid chromatography. Anal. Chim. Acta 2012, 718, 121–9. https://doi.org/10.1016/j.aca.2011.12.063.
  • 58. Liu, T.; Han, L.; Yu, Z.; Zhang, D.; Liu, C. Theoretical and experimental study on the molecular recognition of adrenaline by supramolecular complexation with crown ethers. Comput. Biol. Med.2012, 42, 480–4. https://doi.org/10.1016/j.compbiomed.2011.12.017.
  • 59. Gong, Y.; Xiang, Y.; Yue, B. Application of diaza-18-crown-6-capped beta-cyclodextrin bonded silica particles as chiral stationary phases for ultrahigh pressure capillary liquid chromatography. J.Chromatogr. A. 2003, 1002, 63–70. https://doi.org/10.1016/S0021-9673(03)00732-5.
  • 60. Berkecz, R.; Németi, G.; Péter, A.; Ilisz, I. Liquid chromatographic enantioseparations utilizing chiral stationary phases based on crown ethers and cyclofructans. Molecules 2021, 26, 4648. https://doi.org/10.3390/molecules26154648.
  • 61. Thamarai Chelvi, S. K.; Zhaoa, J.; Chen, L.; Yan, S.; Yin, X.; Sun, J.; Yong, E. L.; Wei, Q.; Gong, Y. Preparation and characterization of 4-isopropylcalix[4]arene-capped (3-(2-O-β-cyclodextrin)-2-hydroxypropoxy)-propylsilyl-appended silica particles as Chirac stationary phase for high-performance liquid chromatography. J. Chromatogr. A. 2014, 1324, 104–8. https://doi.org/10.1016/j.chroma.2013.11.025.
  • 62. Thamarai Chelvi, S. K.; Yong, E. L.; Gong, Y. H. Preparation and evaluation of calix[4]arene-capped β-cyclodextrin-bonded silica particles as chiral stationary phase for high-performance liquid chromatography. J. Chromatogr. A. 2008, 1203, 54–8. https://doi.org/10.1016/j.chroma.2008.07.021.
  • 63. Ma, M.; Wei, Q.; Meng, M.; Yin, J.; Shan, Y.; Du, L.; Zhu, X.; Soh, S. F.; Min, M.; Zhou, X.; Yin, X.; Gong, Y. Preparation and application of aza-15-crown-5-capped aethylcalix[4]resorcinarenebonded silica particles for use as chiral stationary phase in HPLC. Chromatographia 2017, 80, 1007–14. https://doi.org/10.1007/s10337-017-3312-4.
  • 64. Tan, H. M.; Soh, S. F.; Zhao, J.; Yong, E. L.; Gong, Y. Preparation and application of methylcalix[4]resorcinarene-bonded silica particles as chiral stationary phase in high-performance liquid chromatography. Chirality 2011, 23(Suppl 1(1E)), E91–7. https://doi.org/10.1002/chir.20983.
  • 65. Dittmann, M. M.; Rozing, G. P. Capillary electrochromatography –a high-efficiency micro-separation technique. J. Chromatogr. A. 1996, 744, 63–74. https://doi.org/10.1016/0021-9673(96)00382-2.
  • 66. Cikalo, M. G.; Bartle, K. D.; Robson, M. M.; Myers, P.; Euerby, M. R. Capillary electrochromatography. Analyst 1998, 123, 87–102. https://doi.org/10.1039/a801148f.
  • 67. Krause, K.; Girod, M.; Chankvetadze, B.; Blaschke, G. Enantioseparations in normal- and reversed-phase nano-high-performance liquid chromatography and capillary electrochromatography using polyacrylamide and polysaccharide derivatives as chiral stationary phases. J. Chromatogr. A. 1999, 837, 51–63. https://doi.org/10.1016/S0021-9673(99)00075-8.
  • 68. Francotte, E. Contribution of preparative chromatographic resolution to the investigation of chiral phenomena. J. Chromatogr. A. 1994, 666, 565–601. https://doi.org/10.1016/0021-9673(94)80419-2.
  • 69. Francotte, E.; Jung, M. Enantiomer separation by open-tubular liquid chromatography and electrochromatography in cellulosecoated capillaries. Chromatographia 1996, 42, 521–7. https://doi.org/10.1007/BF02290286.
  • 70. Mayer, S.; Briand, X.; Francotte, E. Separation of enantiomers by packed capillary electrochromatography on a cellulose-based stationary phase. J. Chromatogr. A. 2000, 875, 331–9. https://doi.org/10.1016/s0021-9673(99)01335-7.
  • 71. Otsuka, K.; Mikami, C.; Terabe, S. Enantiomer separations by capillary electrochromatography using chiral stationary phases. J. Chromatogr. A. 2000, 887, 457–63. https://doi.org/10.1016/S0021-9673(99)01205-4.
  • 72. Kawamura, K.; Otsuka, K.; Terabe, S. Capillary electrochromatographic enantioseparations using a packed capillary with a 3 μm OD-type chiral packing. J. Chromatogr. A. 2001, 924, 251–7. https://doi.org/10.1016/s0021-9673(01)00902-5.
  • 73. Girod, M.; Chankvetadze, B.; Blaschke, G. Enantioseparations In non-aqueous capillary electrochromatography using polysaccharide type chiral stationary phases. J. Chromatogr. A. 2000, 887, 439–55. https://doi.org/10.1016/S0021-9673(99)01204-2.
  • 74. Wang, R.-Q.; Ong, T.-T.; Ng, S.-C. Chemically bonded cationic β-cyclodextrin derivatives and their applications in supercritical fluid chromatography. J. Chromatogr. A. 2012, 1224, 97–103. https://doi.org/10.1016/j.chroma.2011.12.053.
  • 75. Williams, K. L.; Sander, L. C.; Wise, S. A. Comparison of liquid and supercritical fluid chromatography using naphthylethylcarbamoylated-β-cyclodextrin chiral stationary phases. J. Chromatogr. A. 1996, 746, 91–101. https://doi.org/10.1016/0021-9673(96)00291-9.
  • 76. Folprechtová, D.; Kalíková, K. Macrocyclic glycopeptide-based chiral selectors for enantioseparation in sub/supercritical fluid chromatography. Anal. Sci. Adv. 2020, 2, 15–32. https://doi.org/10.1002/ansa.202000099.
  • 77. Phinney, K. W.; Sander, L. C. Preliminary evaluation of a standard reference material for chiral stationary phases used in liquid and supercritical fluid chromatography. Anal. Bioanal. Chem. 2002, 372, 101–8. https://doi.org/10.1007/s00216-001-1198-2.
  • 78. Phinney, K. W.; Sander, L. C. Additive concentration effects on enantioselective separations in supercritical fluid chromatography. Chirality 2003, 15, 287–94. https://doi.org/10.1002/chir.10196.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-601e6019-d3fd-440b-89e0-dc4f653fecd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.