Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 68, iss. 3 | 875--880
Tytuł artykułu

Investigation on Structural, Electronic, Thermal and Thermoelectric Properties of Al0.25B0.75As Alloy Under Pressure, Based on Density Functional Theory (DFT)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, structural, electronic, thermal, and thermoelectric properties of Al0.25B0.75As alloy, under pressures 0 GPa, 4 GPa and 8 GPa, have been calculated. The value of band gap at present work under 0 GPa, with GGA(PBE) exchange-correlation potential, is very close to other works with TB-mBJ method. This is a result of equal selection of muffin-tin radius spheres that are bigger than usual size for Al and B atoms. The values of band gap decrease by increasing pressure. In thermal properties, phonon contribution of heat capacity at constant volume and Debye temperature have been calculated in the range of 0K to 1000K temperatures and under 0 GPa, 4 GPa and 8 GPa pressures. Thermoelectric properties, under the same pressures and in the range of 100K to 1000K temperatures have been investigated.
Wydawca

Rocznik
Strony
875--880
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Department of Physics, Ardabil Branch, Islamic Azad University, Ardabil, Iran, alif1364@yahoo.com
  • Department of Physics, Rasht Branch, Islamic Azad University, Rasht, Iran
  • Department of Physics, Ardabil Branch, Islamic Azad University, Ardabil, Iran
Bibliografia
  • [1] F. El Haj Hassan, A. Breidi, S. Ghemid, B. Amrani, H. Meradji, O. Pagès, J. Alloys Compd. 499, 80-89 (2010).
  • [2] K. Boubendira, H. Meradji, S. Ghemid, F.H. Hassan, Mater. Sci. Semicond. Process 16, 2063-2069 (2013).
  • [3] A. Fazeli Kisomi, S.J. Mousavi, Pramana. J. Phys. 91, 18 (2018).
  • [4] R. Moussaa, A. Abdiche, R. Khenatab, S.B. Omran, Mater. Res. Express. 6, 105902 (2019).
  • [5] K. Boubendira, S. Bendaif, O. Nemiri, A. Boumaza, H. Meradji, S. Ghemid, F. El Haj Hassan, Chin. J. Phys. 55,1092-1102 (2017).
  • [6] K. Iga, S. Kinoshita, Process Technology for Semiconductor Lasers, Springer-Verlag, Berlin, (1996).
  • [7] M. Quillec, Materials for Optoelectronics, Kluwer Academic Publ., Boston (1996).
  • [8] O.A. Golikova, Phys. Status Solidi A51, 11-40 (1979).
  • [9] N. Chimot, J. Even, H. Folliot, S. Loualiche, Physica B. 364, 263-272 (2005).
  • [10] M. Ferhat, A. Zaoui, M. Certier, H. Aourag, Physica B. 252, 229-236 (1998).
  • [11] B. Bouhafs, H. Aourag, M. Ferhat, M. Certier, J. Phys. Condens. Matter. 11, 5781 (1999).
  • [12] A. Zaoui, F. El Haj Hassan, J. Phys. Condens. Matter. 13, 253 (2001).
  • [13] R.M. Wentzcovich, K.J. Chang, M.L. Cohen, Phys. Rev. B. 34, 1071 (1986).
  • [14] A. Garcia, M.L. Cohen, Phys. Rev. B. 47, 4215 (1993).
  • [15] J. Perdew, K.P. Burke, M. Ernzerhoff, Phys. Rev. Lett. 77, 3865-3868 (1996).
  • [16] F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).
  • [17] P. Blaha, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, an Augmented Plane Wave Plus Local OrbitalsProgram for Calculating Crystal Properties (Vienna, Austria, 2008).
  • [18] A. Otero-de-la-Roza, V. Luaña, Comput. Phys. Commun. 182, 1708-1720 (2011).
  • [19] A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña, Comput. Phys. Commun. 182, 2232-2248 (2011).
  • [20] G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67-71 (2006).
  • [21] S. Adachi, “Properties of group-IV, III-V and II-VI semiconductors.” Wiley Series in Materials for Electronic and Optoelectronic Applications, edited by P. Capper, S. Kasap, and A. Willoughby, England Wiley, (2005).
  • [22] A. Anjami, A. Boochani, S.M. Elahi, H. Akbari, Results Phys. 7, 3522-3529 (2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-601a9dbc-7935-4006-a368-90d491463989
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.