Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 8 | 10--23
Tytuł artykułu

Modeling of Biogas Production of Camel and Sheep Manure Using Tomato and Rumen as Co-Substrate via Kinetic Models

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current study investigated anaerobic biodigestion (AD) of livestock manure, including camel dung (CD) and sheep manure (SM) mixed with tomato and rumen at different mixed ratios under mesophilic (24–34°C) conditions. The study yielded successful results, as the process was able to produce sustainable bioenergy. Predicted biogas data was acquired through fundamental mathematical calculations using SPSS statistical analysis by nonlinear regression. Three kinetic models, namely the modified Gompertz, Logistic, and Transference models, were used for simulating the daily biogas produced from the examinations, and model parameters were determined simultaneously. The three models performed well in AD simulations, with high correlation coefficient values (R-squared) and low root mean square error (RMSE), showing a significant link between experimental data and model parameters. However, modified Gompertz demonstrated an improved fit in the simulation of the measurements, as it could accurately represent the curves in the plots, with the highest R-squared of 0.987 compared to Logistics 0.981 and Transference models 0.933, and the lowest RMSE was 0.356 compared to 0.432, and 0.812, respectively. This work suggested that a modified Gompertz model is suitable for estimating the biogas yield potential. The findings also show that rumen, tomato, and control biodigesters operating in mesophilic environments are dependable choices for producing biogas.
Wydawca

Rocznik
Strony
10--23
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • College of Science, Department of Physics, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
  • College of Science, Department of Physics, University of Jeddah, Jeddah, Kingdom of Saudi Arabia, bushra5272@hotmail.com
Bibliografia
  • 1. Adamu, A.A., Aluyor, E.O. 2013. Empirical model for predicting the rate of biogas production. Global Journal of Engineering Research, 12(1), 63–68. https://api.semanticscholar. org/CorpusID:110073176
  • 2. Alharbi, M., Alseroury, F., Alkthami, B. 2023. Biogas production from manure of camel and sheep using tomato and rumen as co-substrate. Journal of Ecological Engineering, 24(11), 54–61. https://doi. org/10.12911/22998993/170984
  • 3. Amogha A.K. 2020. Wireless Transmission of Solar Generated Power. International Journal of Scientific Research in Network Security and Communication, 8(5), 13-15.
  • 4. Anand, D.G., Lakshmi Niharika K. , Shrikala, Sunanda L., Varsha M. 2021. The development of an innovative hybrid stove with solar and biogas for rural areas. International Journal of Computer Sciences and Engineering, 9(6), 25–28. https://doi. org/10.26438/ijcse/v9i6.2528
  • 5. Budiyono, I.N., Johari, S., Sunarso. 2010. The kinetic of biogas production rate from cattle manure in batch mode. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 4(1), 75–80. https://api.semanticscholar.org/CorpusID:7397121
  • 6. Chai, T., Draxler, R. 2014. Root mean square error (RMSE) or mean absolute error (MAE)? Geosci. Model Dev., 7. https://doi.org/10.5194/ gmdd-7-1525-2014
  • 7. Chicco, D., Warrens, M.J., Jurman, G. 2021. The coeff icient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE, and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, 1–24. https://doi.org/10.7717/PEERJ-CS.623
  • 8. Clarkson, M.A. 2023. A simulation of biogas production from lignocellulosic biomass co-digested with agricultural waste under the influence of bentonite catalyst. African Journal of Environmental Sciences & Renewable Energy, 12(1). www.afropolitanjournals.com [invalid URL removed]
  • 9. Deepanraj, B., Sivasubramanian, V., Jayaraj, S. 2015. Kinetic study on the effect of temperature on biogas production using a lab-scale batch reactor. Ecotoxicology and Environmental Safety, 121 100–104. https://doi.org/10.1016/J.ECOENV.2015.04.051
  • 10. Ejimofor, M.I., Ezemagu, I.G., Menkiti, M.C. 2020. Biogas production using coagulation sludge obtained from paint wastewater decontamination: Characterization and anaerobic digestion kinetics. Current Research in Green and Sustainable Chemistry, 3. https://doi.org/10.1016/j.crgsc.2020.100024
  • 11. Elkawnie, L.M., Salsabila, A., Anggraini, F., Jamilatun, S. 2021. Development of Kinetic Models For Biogas Production From Tofu Liquid Waste. Journal of Islamic Science and Technology, 7(1): 107. https://doi.org/10.22373/ekw.v7.i1.8296
  • 12. Elsayed, M., Andres, Y., Blel, W. 2022. Modeling of sludge and flax anaerobic co-digestion based on a combination of first order and modified Gompertz models: Influence of C/N ratio and headspace gas volume. Desalination and Water Treatment, 250, 136–147. https://doi.org/10.5004/dwt.2022.28153
  • 13. Elsayed, M., Andres, Y., Blel, W., Gad, A.A.M., Ahmed, A.T. 2016. Effect of VS organic loads and buckwheat husk on methane production by anaerobic co-digestion of primary sludge and wheat straw. Energy Conversion and Management, 117, 538–547. https://api.semanticscholar.org/CorpusID:100614343
  • 14. Etuwe, C.N., Momoh, Y.O.L., Iyagba, E.T. 2016. Development of mathematical models and application of the modified Gompertz model for designing batch biogas reactors. Waste and Biomass Valorization, 7(3), 543–550. https://doi.org/10.1007/s12649-016-9482-8
  • 15. Feng, J., Li, Y., Zhang, E., Zhang, J., Wang, W., He, Y., Liu, G., Chen, C. 2018. Solid-state co-digestion of NaOH-pretreated corn straw and chicken manure under mesophilic condition. Waste and Biomass Valorization, 9(6), 1027–1035. https://doi. org/10.1007/s12649-017-9834-z
  • 16. Gallipoli, A., Braguglia, C.M., Gianico, A., Montecchio, D., Pagliaccia, P. 2020. Kitchen waste valorization through a mild-temperature pretreatment to enhance biogas production and fermentability: Kinetics study in mesophilic and thermophilic regimen. Journal of Environmental Sciences, 89, 167–179. https://doi.org/10.1016/J. JES.2019.10.016
  • 17. Gerber, M., Span, R. 2008. An analysis of available mathematical models for anaerobic digestion of organic substances for the production of biogas. Proceedings of the International Gas Union Research Conference, 2, 1–30.
  • 18. Igoni, A.H., Ayotamuno, M.J., Eze, C.L., Ogaji, S.O.T., Probert, S.D. 2008. Designs of anaerobic digesters for producing biogas from municipal solid-waste. Applied Energy, 85(6), 430–438. https:// doi.org/10.1016/J.APENERGY.2007.07.013
  • 19. Jijai, S., Siripatana, C. 2017. Kinetic model of biogas production from co-digestion of Thai rice noodle wastewater (Khanomjeen) with chicken manure. Energy Procedia, 138, 386–392. https://doi. org/10.1016/J.EGYPRO.2017.10.177
  • 20. Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L. 2011. The anaerobic digestion of solid organic waste. Waste Management, 31(8), 1737–1744. https://doi.org/10.1016/J.WASMAN.2011.03.021
  • 21. Kothari, R., Tyagi, V.V., Pathak, A. 2010. Waste-to-energy: A way from renewable energy sources to sustainable development. Renewable and Sustainable Energy Reviews, 14(9), 3164–3170. https://doi.org/10.1016/J.RSER.2010.05.005
  • 22. Lema, J.M., Omil, F. 2001. Anaerobic treatment: a key technology for a sustainable management of wastes in Europe. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 44(8), 133–140. https://api. semanticscholar.org/CorpusID:30279944
  • 23. Li, J., Kumar Jha, A., He, J., Ban, Q., Chang, S., Wang, P. 2011. Assessment of the effects of dry anaerobic co-digestion of cow dung with waste water sludge on biogas yield and biodegradability. International Journal of the Physical Sciences, 6(15), 3723–3732. https://doi.org/10.5897/IJPS11.753
  • 24. Li, Y., Zhang, R., Chen, C., Liu, G., He, Y., Liu, X. 2013. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid-state conditions. Bioresource Technology, 149, 406–412. https://doi. org/10.1016/J.BIORTECH.2013.09.091
  • 25. Lou, X.F., Nair, J. 2009. The impact of landfilling and composting on greenhouse gas emissions – A review. Bioresource Technology, 100(16), 3792–3798. https://doi.org/10.1016/J.BIORTECH.2008.12.006
  • 26. Manjusha, C., Beevi, B.S. 2016. Mathematical modeling and simulation of anaerobic digestion of solid waste. Procedia Technology, 24, 654–660. https:// doi.org/10.1016/J.PROTCY.2016.05.174
  • 27. Manu, G., Clarkson, M.A. 2022. Modelling the effects of dilute alkaline pretreatment of lignocellulosic biomass on biogas production. African Journal of Environmental Sciences & Renewable Energy, 5(1), www.afropolitanjournals.com.
  • 28. Membere, E., John, U., Joshua, O. 2013. Computational model for biogas production from solid waste. Semantic Scholar, Corpus ID: 55380030. https://api. semanticscholar.org/CorpusID:55380030
  • 29. Moharir, S., Bondre, A., Vaidya, S., Patankar, P., Kanaskar, Y., Karne, H. 2020. Comparative analysis of the amount of biogas produced by different cultures using the modified Gompertz model and logistic model. European Journal of Sustainable Development Research, 4(4), em0141. https://doi.org/10.29333/ejosdr/8550
  • 30. Musa Abubakar, A., Umdagas, L.B., Waziri, A.Y., Buba Umdagas, L., Itamah, I. 2022. Estimation of biogas potential of liquid manure from kinetic models at different temperature. International Journal of Scientific Research in Computer Science and Engineering, 10(2), 46–63. https://www.researchgate. net/publication/360412702
  • 31. Musingarimi, W., Okeleye, B.I., Okudoh, V.I., Ntwampe, S.K.O. 2019. Prediction of biogas production from the co-digestion of winery solid waste and zebra manure using the modified Gompertz model (GM) and Logistic Equation (LE). ERES, 8. https:// doi.org/10.17758/eares8.eap1119248
  • 32. Nges, I.A., Liu, J. 2010. Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renewable Energy, 35(10), 2200–2206. https://doi. org/10.1016/J.RENENE.2010.02.022
  • 33. Oliveira, L.B., Rosa, L.P. 2003. Brazilian waste potential: energy, environmental, social and economic benefits. Energy Policy, 31(14), 1481–1491. https:// doi.org/10.1016/S0301-4215(02)00204-5
  • 34. Onu, C.E., Nweke, C.N., Nwabanne, J.T. 2022. Modeling of thermo-chemical pretreatment of yam peel substrate for biogas energy production: RSM, ANN, and ANFIS comparative approach. Applied Surface Science Advances, 11. https://doi. org/10.1016/j.apsadv.2022.100299
  • 35. Opurum, C.C. 2021. Kinetic Study on Biogas Production from Cabbage (Brassica oleracea) Waste and Its Blend with Animal Manure Using Logistic Function Model. Journal of Advances in Microbiology. https://doi.org/10.9734/jamb/2021/v21i130317
  • 36. Paritosh, K., Mathur, S., Pareek, N., Vivekanand, V. 2018. Feasibility study of waste (d) potential: co-digestion of organic wastes, synergistic effect and kinetics of biogas production. International Journal of Environmental Science and Technology, 15(5), 1009–1018. https://doi.org/10.1007/s13762-017-1453-5
  • 37. Pham Van, D., Pham Phu, S.T., Giang, H. 2018. A new kinetic model for biogas production from co-digestion by batch mode. Global Journal of Environmental Science and Management. https://doi. org/10.22034/GJESM.2018.03.001
  • 38. Pommier, S., Chenu, D., Quintard, M., Lefebvre, X. 2007. A logistic model for the prediction of the inf luence of water on the solid waste methanization in landfills. Biotechnology and Bioengineering, 97(3), 473–482. https://doi.org/10.1002/bit.21241
  • 39. Sarstedt, M., Mooi, E. 2014. Regression Analysis. https://doi.org/10.1007/978-3-642-53965-7_7
  • 40. Scano, E.A., Asquer, C., Pistis, A., Ortu, L., Demontis, V., Cocco, D. 2014. Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Conversion and Management, 77, 22–30. https://api.semanticscholar.org/CorpusID:93820575
  • 41. Shitophyta, L.M., Arnita, A., Wulansari, H.D.A. 2023. Evaluation and modelling of biogas production from batch anaerobic digestion of corn stover with oxalic acid. Research in Agricultural Engineering, 69(3), 151–157. https://doi.org/10.17221/98/2022-RAE
  • 42. Somogyi, Z. 2021. Performance evaluation of machine learning models. In Z. Somogyi (Ed.), The application of artificial intelligence: Stepby-step guide from beginner to expert 87–112. Springer International Publishing. https://doi. org/10.1007/978-3-030-60032-7_3
  • 43. Syaichurrozi, I., Suhirman, S., Hidayat, T. 2018. Effect of initial pH on anaerobic co-digestion of Salvinia molesta and rice straw for biogas production and kinetics. Biocatalysis and Agricultural Biotechnology, 16, 594603. https://doi.org/10.1016/J.BCAB.2018.10.007
  • 44. Teguh W.W., Ahmad A., Ana N., Elita R. 2009. Design and development of biogas reactor for farmer group scale. Indonesian Journal of Agriculture, 2(2).
  • 45. Ugwu, S., Obinwanne Ugwuishiwu, B., Echiegu, E.A. 2018. Kinetic Studies on Methane Production from Okra Wastes Using Growth Functions. Retrieved from https://www.researchgate.net/ publication/336497906
  • 46. Umeghalu, C., Chukwuma, E., Okonkwo, I.F., Umeh, S. 2012. Potentials for biogas production in Anambra State of Nigeria using cow dung and poultry droppings. International Journal of Veterinary Science, 1, 26–30. Retrieved from https://api. semanticscholar.org/CorpusID:126637429
  • 47. Varma, C.G., Kannan, A., Gleeja, V.L. 2017. Co-digestion of livestock manures for enhanced biogas production. Retrieved from https://api.semanticscholar.org/CorpusID:215797925
  • 48. Walker, L., Charles, W., Cord-Ruwisch, R. 2009. Comparison of static, in-vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes. Bioresource Technology, 100(16), 3799–3807. https://doi.org/10.1016/J. BIORTECH.2009.02.015
  • 49. Winquist, E., Rikkonen, P., Pyysiäinen, J., Varho, V. 2019. Is biogas an energy or a sustainability product? - Business opportunities in the Finnish biogas branch. Journal of Cleaner Production, 233, 1344–1354. https://doi.org/10.1016/J. JCLEPRO.2019.06.181
  • 50. Yadvika, Santosh, Sreekrishnan, T.R., Kohli, S., Rana, V. 2004. Enhancement of biogas production from solid substrates using different techniques––a review. Bioresource Technology, 95(1), 1–10. https://doi.org/10.1016/J.BIORTECH.2004.02.010
  • 51. Yates, L.A., Aandahl, Z., Richards, S.A., Brook, B.W. 2023. Cross-validation for model selection: A review with examples from ecology. Ecological Monographs, 93(1), e1557. https://doi.org/10.1002/ecm.1557
  • 52. Lim Y.F., Chan, Y.J., Abakr, Y.A., Sethu, V., Selvarajoo, A., Singh, S.Lee, J., Gareth, M. 2022a. Evaluation of potential feedstock for biogas production via anaerobic digestion in Malaysia: kinetic studies and economics analysis. Environmental Technology, 43(16), 2492–2509. https://doi.org/10.1080/09 593330.2021.1882587
  • 53. Zahan, Z., Othman, M.Z., Muster, T.H. 2018. Anaerobic digestion/co-digestion kinetic potentials of different agro-industrial wastes: A comparative batch study for C/N optimisation. Waste Management, 71, 663–674. https://doi.org/10.1016/J.WASMAN.2017.08.014
  • 54. Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P. 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4), 929–935. https://doi.org/10.1016/J.BIORTECH.2006.02.039
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5feefca9-b3b6-46fd-aa96-2fbd80c34e0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.