Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | Vol. 29, No. 3 | 183--195
Tytuł artykułu

Critical assessment of Jenny’s soil forming equation in light of cosmic airbursts on the Viso Massif

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Jenny’s soil formation equation places soil morphogenesis as a response to climate (cl), biota (o), relief (r), parent material (p), and time (t), written thus: s= f (cl, o, r, p, t…), where each variable is considered independent. Because some soils and paleosols contain cosmic impact/airburst evidence, recent soil morphogenesis research requires a rewritten equation: s= f (cl, o, r, p, t, c…), where c = cosmic. This addition serves to alert researchers to the presence of cosmic input to soils under investigation as part of geological and geomorphological projects. In particular, research targeting the cause of the Younger Dryas Climatic Divide (YDCD) might focus only on pollen in European glaciolacustrine sediments, reversal of the marine thermohaline circulation in the N. Atlantic Ocean, and possible reversal of postglacial warming at the Allerød termination (12.8 ka), when a search for cosmic grains may change the research outcome. Hence, the importance of the ‘c’ addition to Jenny’s factor analysis of soil morphogenesis.
Wydawca

Czasopismo
Rocznik
Strony
183--195
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Quaternary Surveys, 26 Thornhill Ave., Thornhill, Ontario, Canada, L4J 1J4; York University, Department of Geography, 4700 Keele St., N. York, Ont., Canada, M3J 1P3, arkose41@gmail.com
Bibliografia
  • Amundson, R., Harden, J. & Singer, M., 1994. Factors of soil formation: A fiftieth anniversary retrospective. Soil Science Society America, Special Publication 33, 160 pp.
  • Badyukov, D.D., Ivanov, A.V., Raitala, J.& Khisina, N.R., 2011. Spherules from the Tunguska Event Site: Could they originate from the Tunguska Cosmic Body? Geochemistry International 49, 641–653 https://doi.org/10.1134/S0016702911070032.
  • Birkeland, P.W., 1999. Soils and Geomorphology. Oxford, NY, 436 pp.
  • Bunch, T.E., 2022. A Tunguska sized airburst destroyed Tall el Hammam a Middle Bronze Age city in the Jordan Valley near the Dead Sea. Scientific Reports. https://doi.org/10. 1038/s41598-021-97778-3.
  • Canada Soil Survey Committee, 1998. The Canadian system of soil classification. Ottawa, 637 NRC Re- search Press (publ. 1646), 187 p.
  • Cossart, E., Fort, M., Bourles, D., Carcaillet, J., Perrier, R., Siame, L. & Braucher, R., 2010. Climatic significance of glacier retreat and rock glaciers re-assessed in the light of cosmogenic dating and weathering rind thickness in Clarée valley (Briançonnais, French Alps). Catena 80, 204–219.
  • Deer, W.A., Howie, R.A. & Zussman, J., 1966. An introduction to the rock-forming minerals. New York, Wiley, 340–355.
  • Dokuchaev, V.V., 1883. Russian Chernozem. Report to the Free Economic Society. St. Petersburg, 376 pp.
  • Dorn, R.I., Mahaney, W.C. & Krinsley, D.H., 2017. Case hardening: turning weathering rinds into protective shells. Elements, 13, 165–169.
  • Fesenkov, V.G., 1961. On the cometary nature of the Tunguska Meteorite. Astronomicheskii Zhurnal 577–592.
  • Gladysheva, O., 2020. The Tunguska event. Icarus 348, 113837.
  • Hodgson, J.M., 1976. Soil survey field handbook. Soil Survey Technical Monograph 5, Harpenden, Rothamsted Experimental Station, 99 pp.
  • Jenny, H., 1941. Factors of soil formation. McGraw-Hill, N.Y., 281 pp.
  • Jenny, H., 1958. Role of the plant factor in the pedogenic functions. Ecology, 39, 5–16.
  • Jenny, H., 1980. The Soil Resource - origin and behavior. Springer-Verlag, N.Y., 377 pp.
  • Johnson, C.F. & Watson-Stegner, D., 1990. The soil-evolution model as a framework for evaluating pedoturbation in archaeological site information. [In:] N.P. Lasca & J. Donahue (Eds), Archaeological Geology of N. America, Geological Society America Centennial Special 4, 541–560.
  • Kennett, J.P., Kennett, D.J., Culleton, B.J., Tortosa, J.E.A., Bischoff, J.L., Bunch, T.E., Daniel, I.R., Erlandson, J.M., Ferraro, D., Firestone, R.B., Goodyear, A.C., Israde-Alcántara, I., Johnson, J.R., Jordá Pardo, J.F., Kimbel, D.R., LeCompte, M., Lopino, N.H., Mahaney, W.C., Moore, A.M.T., Moore, C.R., Ray, J.H., Stafford, T.W. Jr., Tankersley, K.B., Wittke, J.H., Wolbach, W.C. & West, A., 2015. Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 cal B.P. for Younger Dryas boundary on four continents. Proceedings of National Academy of Science. https://doi.org/10.1073/pnas.1507146112.
  • Mahaney, W.C., 1990. Ice on the Equator. Caxton Ltd, Ellison Bay, 386 pp.
  • Mahaney, W.C., 2019. Paleoenvironmental archives in rock rinds and sand/silt coatings. Journal of Geology 127, 411–435.
  • Mahaney, W.C., 2002. Atlas of sand grain surface textures and application. Oxford University Press, Oxford, 237 pp.
  • Mahaney, W.C., 2023. The Younger Dryas Boundary (YDB): Terrestrial, cosmic, or both? International Journal of Earth Science. https://doi.org/10.1007/s00531-022-02287-x.
  • Mahaney, W.C. & Boyer, M.G., 1986. Microflora distributions in Quaternary paleosols on Mount Kenya, East Africa, Catena 13, 155–167.
  • Mahaney, W.C. & Hancock, R.G.V., 2022. Origin, weathering and paleoclimatic significance of middle-Late Pleistocene slope covers, Mt. Kenya, Kenya. Studia Quaternaria 39, 51–81. https://doi.org/10.24425/sq.2021.136833.
  • Mahaney, W.C. & Keiser, L., 2013. Weathering rinds: unlikely host clasts for evidence of an impact-induced event. Geomorphology 184, 74–83.
  • Mahaney, W.C. & Sanmugadas, K., 1983. Early Holocene soil catena in Titcomb Basin, Wind River Mountains, Western Wyoming, Zeitschrift für Geomorphologie 27, 265–281.
  • Mahaney, W.C. & Schwartz, S., 2016. Paleoclimate of Antarctica reconstructed from clast weathering rind analysis. Palaeogeography, Paleoclimatology, Paleoecology 446, 205–212.
  • Mahaney, W.C., Dohm, J.M. & Fairen, A., 2012. Weathering rinds on clasts: examples from Earth and Mars as short-and-long term recorders of paleoenvironment. Journal of Planetary and Space Sciences 73, 243–253.
  • Mahaney, W.C., Keiser, L., Krinsley, D.H., Pentlavalli, P., Allen, C.C.R., Somelar, P., Schwartz, S., Dohm, J.M., Dirzowsky, R.,W., Allen, J.P. & Costa, P., 2013a. Weathering rinds-as-mirror-images of palaeosols: examples from the Western Alps with correlation to Antarctica and Mars. Journal of the Geological Society 170, 833–847. https://doi.org/10.1144/jgs 2012-150.
  • Mahaney, W.C., Keiser, L., Krinsley, D.H., Kalm, V., Beukens, R. & West, A., 2013b. New evidence from a black mat site in the northern Andes supporting a cosmic impact 12,800 years ago. Journal of Geology 121, 309–325.
  • Mahaney, W.C., Somelar, P., Dirszowsky, R.W., Kelleher, B., Pentlavalli, P., McLaughlin, S., Kulakova, A.N., Jordan, S., Pulleyblank, C., West, A. & Allen, C.C.R., 2016a. A microbial link to weathering of postglacial rocks and sediments, Mt. Viso area, Western Alps, demonstrated through analysis of a soil/paleosol bio/chronosequence. Journal of Geology 124, 149–169.
  • Mahaney, W.C., Krinsley, D.H., Razink, J., Fischer, R. & Langworthy, K., 2016b. Clast rind analysis using multi-high-resolution instrumentation. Scanning 38, 202–212.
  • Mahaney, W.C., Allen, C.C.R., Pentlavalli, P., Kulakova, A., Young, J.M., Dirszowsky, R.W., West, A., Kelleher, B., Jordan, S., Pulleyblank, C., O’Reilly, S., Murphy, B.T., Lasberg, K., Somelar, P., Garneau, M., Finkelstein, S.A., Sobol, M.K., Kalm, V., Costa, P.J.M., Hancock, R.G.V., Hart, K.M., Tricart, P., Barendregt, R.W., Bunch, T.E. & Milner, M.W., 2017a. Biostratigraphic evidence relating to the age-old question of Hannibal’s invasion of Italy: I, History and geological reconstruction. Archaeometry 59, 164–178.
  • Mahaney, W.C., Somelar, P., West, A., Krinsley, D.A., Christopher, C.R., Pentlavalli, P., Young, J.M., Dohm, J.M., LeCompte, M., Kelleher, B., Jordan, S., Pulleyblank, C., Dirszowsky, R. & Costa, P., 2017b. Evidence for cosmic airburst/impact in the Western Alps archived in Late Glacial Paleosols. Quaternary International 438, 68–80.
  • Mahaney, W.C., Krinsley, D.H., Milner, M.W., Fischer, R.F. & Langworthy, K., 2018a. Did the Black Mat Impact/Airburst reach the Antarctic: evidence from New Mountain near the Taylor Glacier in the Dry Valley Mountains. Journal of Geology 126, 285–305.
  • Mahaney, W.C., Somelar, P., West, A., Dirszowsky, R., Allen, C.C.R., Remmel, T. & Tricart, P., 2018b. Reconnaissance of the Hannibalic Route in the Upper Po Valley, Italy: Correlation with biostratigraphic historical archaeological evidence in the Upper Guil Valley of France. Archaeometry. https://doi.org/10.1111/arcm.12405.
  • Mahaney, W.C., Somelar, P. & Allen, C., 2022. Late Pleistocene glacial-paleosol-cosmic record of the Viso Massif - France and Italia - New evidence in support of the Younger Dryas boundary (12.8 ka). International Journal of Earth Science. https://doi.org/10.1007/s00531-022-02243-9.
  • Mangerud, J., 2021. The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50, 1–5. https://doi.org/10.1111/bor.12481.
  • Moore, A.M.T., Kennett, J.P., Napier, W.M., Bunch, T.E., Weaver, J.C., LeCompte, M., Adedeji, A.V., Hackley, P., Kletetschka, G., Hermes, R.E., Wittke, J.H., Razink, J.J., Gaultois, M.W. & West, A., 2020. Evidence of cosmic impact at Abu Hureyra, Syria at the Younger Dryas onset (~128 ka): High-temperature melting at >2200°C. Science Report 10, 4185. https://doi.org/10.1038/s41598-020-60867.
  • Moore, C.R., West, A., LeCompte, M.A., Brooks, M.J., Daniel, I.R. Jr., Goodyear, A.C., Ferguson, T.A., Ivester, A.H., Feathers, J.K., Kennett, J.P., Tankersley, K.B., Adedeji, A.V., Bunch, T.E., 2017. Widespread platinum anomaly documented at the Younger Dryas onset in North American sedimentary sequences. Science Report 7, 44031.
  • Napier, W.M., 2010. Palaeolithic extinctions and the Taurid Complex. Monthly Notices Royal Astronomical Society 405, 1901–1906.
  • NSSC, 1995. Investigations Report 45. Version 1.00. National Soil Survey Center, Washington, 305 p.
  • Peplow, M., Rock samples suggest meteor caused Tunguska blast. Nature (2013). https://doi.org/10.1038/nature.2013.13163
  • Powell, J.L., 2022. Premature rejection in science: The case of the Younger Dryas impact hypothesis. Science Progress 105, 1–43.
  • Svetsov, V., 1996. Total ablation of the debris from the 1908 Tunguska explosion. Nature 383, 697–699.
  • Tankersley, K.B., Meyers, S.D., Meyers, S.A, Jordan, J.A., Herzner, L., Lentz, D.L. & Zedaker, D., 2022. The Hopewell airburst event, 1699–1567 years ago (252–383 CE). Scientific Reports. https://doi.org/10.1038/s41598-022-05758-y
  • West, A. & Firestone, R.B., 2013. Evidence for deposition of 10 million tons of impact spherules across four continents, 12,800 years ago. Proceedings of the National Academy of Sciences, USA. https://doi.org/10.1073/pnas.1301760110
  • Wittke, J.H., Weaver, J.C., Bunch, T.E., Kennett, J.P., Kennett, D.J., Moore, A.M.T., Hillman, G.C., Tankersley, K.B., Goodyear, A.C., Moore, C.R., Daniel, R.,Jr., Ray, J.H., Lopinot, N.H., Ferraro, D., Israde-Alcántara, I., Bischoff, J.L., DeCarli, P.S., Hermes, R.E., Kloosterman, J.B., Revay, Z., Howard, G.A., Kimbel, D.R., Kletetschka, G., Nabelek, L., Lipo, C.P., Sakai, S.,West, A. & Firestone, R.B., 2013. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 years ago. Proceedings of the National Academy of Sciences USA. https://doi.org/10.1073/pnas.1301760110
  • Wolbach, W.S., Ballard, J.P., Mayewski, P.A., Parnell, A.C., Cahill, N., Adedeji, V., Bunch, T.E., Domínguez-Vázquez, G., Erlandson, J.M., Firestone, R.B., French, T.A., Howard, G., Israde-Alcántara, I., Johnson, J.R., Kimbel, D., Kinzie, C.R., Kurbatov, A., Kletetschka, G., LeCompte, M.A., Mahaney, W.C., Melott, A.L., Mitra, S., Maiorana-Boutilier, A., Moore, C.R., Napier, W.M., Parlier, J., Tankersley, K.B., Thomas, B.C., Wittke, J.C., West, A. & Kennett, J.P., 2018a. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ~12,800 years ago. 1. Ice cores and glaciers. Journal of Geology 126, 165–184.
  • Wolbach, W., Ballard, J.P., Mayewski, P.A., Parnell, A.C., Cahill, N., Adedeji, V., Bunch, T.E., 2018b. Extraordinary biomass-burning episode and impact winter triggered by the younger Dryas cosmic impact ~12,800 years ago. 2. Lake, marine, and terrestrial sediments. Journal of Geology 126, 185–205.
  • Young, J.M., Skvortsov, T., Kelleher, B.P., Mahaney, W.C., Somelar, P. & Allen, C.C.R., 2019. Effect of soil horizon stratigraphy on the microbial ecology of alpine paleosols. Science of the Total Environment 657, 1183–1193.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5fd9de7f-188b-4bd8-8fac-813e89e1319c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.