Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 26, No. 2 | 158--164
Tytuł artykułu

Power loss mechanisms in small area monolithic-interconnected photovoltaic modules

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Power loss mechanisms in small area monolithic-interconnected photovoltaic modules (MIM) are described and evaluated. Optical and electrical losses are quantified and individual loss components are derived for loss mechanisms of small area radial (radius = 1 mm) pie-shaped six-segment GaAs MIM laser power converter. At low monochromatic homogeneous illumination (Glow= 1.8 W/cm², λ₀= 809 nm) conversion efficiency of the cell, designed for a low irradiance, is reduced by 3.7%abs. due to isolation trench optical losses and by 7.0%abs. due to electrical losses (mainly perimeter recombination). Electrical losses in a device designed for a high irradiance, result in 18%abs. decrease of output power under homogeneous monochromatic illumination (Ghigh= 83.1 W/cm², λ₀= 809 nm), while 11.6%abs. losses are attributed to optical reasons. Regardless the irradiance level, optical losses further increase if the device is illuminated with a Gaussian instead of an ideal flattop beam profile. In this case, beam spillage losses occur and losses due to isolation trenches and reflections from metallization are elevated. On top of that, additional current mismatch losses occur, if individual MIM’s segments are not equally illuminated. For the studied device, a 29 μm off center misalignment of a Gaussian shaped beam (with 1% spillage) reduces the short circuit current Iscby 10%abs.due to the current mismatch between segments.
Wydawca

Rocznik
Strony
158--164
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
  • University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia, rok.kimovec@fe.uni-lj.si
autor
  • Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany
autor
  • Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany
autor
  • University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
Bibliografia
  • [1] A. Datas, P.G. Linares, Monolithic interconnected modules (MIM) for high irradiance photovoltaic energy conversion: a comprehensive review, Renew. Sustain. Energy Rev. 73 (2017) 477–495, http://dx.doi.org/10.1016/j.rser.2017.01.071.
  • [2] V. Andreev, V. Khvostikov, V. Kalinovsky, V. Lantratov, V. Grilikhes, V. Rumyantsev, et al., High current density GaAs and GaSb photovoltaic cells for laser power beaming, Proc. of 3rd World Conference on Photovoltaic Energy Conversion vol. 1 (2003) 761–764.
  • [3] J. Schubert, E. Oliva, F. Dimroth, W. Guter, R. Loeckenhoff, A.W. Bett, High-voltage GaAs photovoltaic laser power converters, IEEE Trans. Electron Devices 56 (2009) 170–175, http://dx.doi.org/10.1109/TED.2008.2010603.
  • [4] R. Kimovec, H. Helmers, A.W. Bett, M. Topič, Temperature and injection current dependent electroluminescence for evaluation of single-junction single-segment GaAs laser power converter, Informacije MIDEM - J. Microelectron. Electron. Comp. Mater. 46 (2016) 142–148.
  • [5] M. York, S. Fafard, High efficiency phototransducers based on a novel vertical epitaxial heterostructure architecture (VEHSA) with thin p/n junctions, J. Phys. D Appl. Phys. 50 (173003) (2017), http://dx.doi.org/10.1088/1361-6463/aa60a6.
  • [6] G. Bottger, M. Dreschmann, C. Klamouris, M. Hubner, M. Roger, A.W. Bett, et al., An optically powered video camera link, IEEE Photon. Technol. Lett. 20 (2008) 39–41, http://dx.doi.org/10.1109/LPT.2007.912695.
  • [7] K. Worms, C. Klamouris, F. Wegh, L. Meder, D. Volkmer, S.P. Philipps, et al., Reliable and lightning-safe monitoring of wind turbine rotor blades using optically powered sensors: Rotor blade condition monitoring using optically powered sensors, Wind Energy 20 (2017) 345–360, http://dx.doi.org/10.1002/we.2009.
  • [8] C. Algora, I. Rey-Stolle, G.R. Siefer, C. Osterwald, Area measurement, in: Handbook on Concentrator Photovoltaic Technology, John Wiley & Sons, 2016, p. 603.
  • [9] V. Andreev, V. Grilikhes, V. Rumyantsev, N. Timoshina, M. Shvarts, Effect of nonuniform light intensity distribution on temperature coefficients of concentrator solar cells Osaka, Japan, Proc. of 3rd World Conference on Photovoltaic Energy Conversion, 2003 vol. 1 (2003) 881–884.
  • [10] I. Garcia, C. Algora, I. Rey-Stolle, B. Galiana, Study of non-uniform light profiles on high concentration III-V solar cells using quasi-3D distributed models San Diego, CA, USA, Proc. of the 33rd IEEE Photovoltaic Specialists Conference (PVSC) (2008) 1–6, http://dx.doi.org/10.1109/PVSC.2008.4922908.
  • [11] K. Fuse, Beam shaping for advanced laser materials processing, Laser Technik J. 12 (2015) 19–22, http://dx.doi.org/10.1002/latj.201500011.
  • [12] B. Hracek, H. Bäuerle, New ways to generate flat-top profiles, Optik Photonik 10 (2015) 16–18, http://dx.doi.org/10.1002/opph.201500037.
  • [13] A.W. Blakers, Shading losses of solar-cell metal grids, J. Appl. Phys. 71 (1992) 5237–5241, http://dx.doi.org/10.1063/1.350580.
  • [14] R. Kimovec, M. Topič, Comparison of measured performance and theoretical limits of GaAs laser power converters under monochromatic light, Facta Universitatis - Ser.: Electronics Energetics 30 (2017) 93–106, http://dx.doi.org/10.2298/FUEE1701093K.
  • [15] B.E. Pieters, A free and open source finite-difference simulation tool for solar modules Denver, CO, USA: IEEE, Proceedings of the 40th IEEE Photovoltaic Specialist Conference (PVSC) (2014) 1370–1375, http://dx.doi.org/10.1109/PVSC.2014.6925173.
  • [16] T.B. Stellwag, P.E. Dodd, M.S. Carpenter, M.S. Lundstrom, R.F. Pierret, M.R. Melloch, et al., Effects of perimeter recombination on GaAs-based solar cells Kissimmee, FL, USA, Proc. of the 21st IEEE Photovoltaic Specialists Conference (PVSC) vol. 1 (1990) 442–447, http://dx.doi.org/10.1109/PVSC.1990.111663.
  • [17] R. Kimovec, H. Helmers, A.W. Bett, M. Topič, On the influence of the photo–induced leakage current in monolithically interconnected modules, IEEE J. Photovolt. (2018) 1–6, http://dx.doi.org/10.1109/JPHOTOV.2017.2783844.
  • [18] R. Kimovec, H. Helmers, A.W. Bett, M. Topič, Comprehensive Electrical Loss Analysis of Monolithic Interconnected Multi-Segment Laser Power Converters. Submitted for Publication.
  • [19] Y. Wang, N. Chen, X. Zhang, Y. Bai, Y. Wang, T. Huang, et al., Analysis of leakage current in GaAs micro-solar cell arrays, Sci. China Technol. Sci. 53 (2010) 1240–1246, http://dx.doi.org/10.1007/s11431-010-0003-x.
  • [20] K.R. McIntosh, South Wales, in: Lumps, Humps and Bumps: Three Detrimental Effects in the Current-voltage Curve of Silicon Solar Cells, University of New, 2001, Doctoral dissertation http://handle.unsw.edu.au/1959.4/54714.
  • [21] P. Espinet-González, I. Rey-Stolle, M. Ochoa, C. Algora, I. García, E. Barrigón, Analysis of perimeter recombination in the subcells of GaInP/GaAs/Ge triple-junction solar cells: analysis of perimeter recombination, Prog. Photovolt. Res. Appl. 23 (2015) 874–882, http://dx.doi.org/10.1002/pip.2501.
  • [22] L. Wagner, A.W. Bett, H. Helmers, On the alignment tolerance of photovoltaic laser power converters, Optik 131 (2017) 287–291, http://dx.doi.org/10.1016/j.ijleo.2016.11.072.
Uwagi
1. The authors acknowledge the financial support from the Slovenian Research Agency (program P2-0197 and PhD funding for R.K.).
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5fc63c3e-43a4-46bc-92c6-5fc53aed5358
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.