Czasopismo
2006
|
Vol. 16, nr 1-2
|
107--113
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: This paper describes intelligent system to predict steel machinability. Design/methodology/approach: The prediction of machinability of steel, depending on input parameters (percentage of calcium, percentage of oxygen, percentage of sulphur), was performed by means of genetic programming and data on the batches of steel already made. Findings: The mathematical model to predict machinability of steel obtained by genetic programming method gives only 4 wrong predictions out of 146 experimental values. The model was tested also with testing data set. The machinability of the complete test batches (27 experimental values) was successfully predicted. Research limitations/implications: Limitation of the proposed concept is the size of test data (N = 27), which means longer testing period. The 146 batches, which were used for modeling, were collected in the period of February 2004 to April 2005. Practical implications: With the proposed approach, it is possible to establish efficient planning and optimizing of production, to reduce the costs of researches and the handling changes and, finally, to increase satisfaction of the buyers due to shorter delivery times. Originality/value: The paper presents new and innovative approach to predict steel machinability by genetic programming. The prediction precision is at high level. The results show that the proposed concept can be successfully used in practice.
Słowa kluczowe
Rocznik
Tom
Strony
107--113
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Intelligent Manufacturing Systems Laboratory, University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, SI-2000 Maribor, Slovenia, mbrezocnik@uni-mb
autor
- Store Steel d.o.o., Zelezarska cesta 3, SI-3220 Store, Slovenia
autor
- Store Steel d.o.o., Zelezarska cesta 3, SI-3220 Store, Slovenia
Bibliografia
- [1] J. R. Koza, Genetic Programming, The MIT Press, Cambridge, Massachusetts, 1992.
- [2] J. R. Koza, Genetic programming II, The MIT Press, Massachusetts, 1994.
- [3] J. R. Koza, Genetic programming III, Morgan Kaufmann, San Francisco, CA, 1999.
- [4] T. Bäck, U. Hammel and H. P. Schwefel, Evolutionary computation: comments on the history and current state. IEEE transaction on evolutionary computation, 1(1), 1997, 3-17.
- [5] R. L. Haupt and S. E. Haupt, Practical genetic algorithms, 2nd edition, Wiley, Hoboken, N.Y, 2004.
- [6] P. K. Singh, S.C. Jain and P.K. Jain, Tolerance allocation with alternative manufacturing processes – suitability of genetic algorithm, International journal of simulation modelling, 2(1-2), 2003, 22-34.
- [7] M. Brezocnik, M. Kovacic and M. Ficko, Prediction of surface roughness with genetic programming, Journal of materials processing technology, 157/158, 2004, 28-36.
- [8] M. Brezocnik and M. Kovacic, Integrated genetic programming and genetic algorithm approach to predict surface roughness, Materials and manufacturing processes, 18(4), 2003, 475–491.
- [9] M. Brezocnik, J. Balic and Z. Brezocnik, Emergence of intelligence in next-generation manufacturing systems, Robotics and computer-integrated manufacturing, 19(1/2), 2003, 55-63.
- [10] M. Kovacic, J. Balic and M. Brezocnik, Evolutionary approach for cutting forces prediction in milling, Journal of materials processing technology, 155/156, 2004, 1647-1652.
- [11] R. G. Song and Q. Z. Zhang, Heat treatment technique optimization for 7175 aluminum alloy by an artificial neural network and a genetic algorithm, Journal of materials processing technology, 117(1-2), 2001, 84-88.
- [12] H. Kurtaran, B. Ozcelik and T. Erzurumlu, Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm, Journal of materials processing technology, 169(2), 2005, 314-319.
- [13] B. Ozcelik and T. Erzurumlu, Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm, Journal of materials processing technology, 171(3), 2005, 437-445.
- [14] S. Kuriakose and M. S. Shunmugam, Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm, Journal of materials processing technology, 170(1-2), 2005, 133-141.
- [15] L.C. Sousa, C.F. Castro and C.A.C. António, Optimal design of V and U bending processes using genetic algorithms, Journal of materials processing technology, 172(1), 2006, 35-41.
- [16] D. S. Correia, C. V. Gonçalves, S. S. da Cunha, Jr. and V. A. Ferraresi, Comparison between genetic algorithms and response surface methodology in GMAW welding optimization, Journal of materials processing technology, 160(1), 2005, 70-76.
- [17] M. Ficko, M. Brezocnik and J. Balic, Designing the layout of single- and multiple-rows flexible manufacturing system by genetic algorithms, Journal of materials processing technology, 157/158, 2004, 150-158.
- [18] M. Brezocnik, J. Balic and Z. Kampus, Modeling of forming efficiency using genetic programming, Journal of materials processing technology, 109(1/2), 2001, 20-29.
- [19] M. Kovacic, M. Brezocnik, I. Pahole, J. Balic and B. Kecelj, Evolutionary programming of CNC machines, Journal of materials processing technology, 164/165, 2005, 1379-1387.
- [20] G. Galante, A. Lombardo and A. Passannanti, Tool-life modeling as a stochastic process, International journal of machine tools and manufacture, 38(10-11), 1998, 1361-1369.
- [21] ISO 3685:1993, Ed. 2, Tool-life testing with single-point turning tools.
- [22] www.store-steel.si, (July 2005).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5fb2f6e4-8a92-48b9-8ffc-b724a7aa5703