Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | Vol. 66 (1) | 91--98
Tytuł artykułu

Changes in cloudiness contribute to changing seasonality in the Baltic Sea region

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the Baltic Sea region, a significant increase in solar radiation has been detected during the past half-century. Changes in shortwave irradiance are associated with atmospheric transparency and cloudiness parameters like cloud fraction and albedo. One of the most important reasons for day-to-day changes in cloudiness is the synoptic-scale atmospheric circulation; thus, we look for reasons for solar radiation trends due to changes in atmospheric circulation. We analysed regional time series and trends from satellite-based cloud climate data record CLARA-A2 for the Baltic Sea region in 1982–2018. As the rise in solar radiation depends on the seasonally averaged values of total fractional cloud cover (CFC), surface incoming shortwave radiation (SIS) and occurrences of circulation types were analysed. We show that the shift in seasonality connected to the earlier accumulated sums of SIS is at least partly explained by the changes in synoptic-scale atmospheric circulation.
Wydawca

Czasopismo
Rocznik
Strony
91--98
Opis fizyczny
Bibliogr. 22 poz., map., rys., tab., wykr.
Twórcy
autor
  • Institute of Physics, University of Tartu, Tartu, Estonia, piia.post@ut.ee
autor
  • Tartu Observatory, University of Tartu, Tõravere, Estonia
Bibliografia
  • 1. Hersbach, H., Bell, B., Berrisford, P., et al., 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999-2049. https://doi.org/10.1002/qj.3803
  • 2. IPCC, 2022. Summary for Policymakers. In: Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., Malley, J. (Eds.), Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/9781009157926.001
  • 3. IRENA, 2023. Renewable capacity statistics 2023, available at Renewable capacity statistics 2023 (irena.org) last access: 30 March 2023.
  • 4. Jaagus, J., Truu, J., Ahas, R., Aasa, A., 2003. Spatial and temporal variability of climatic seasons on the east European plain in relation to large-scale atmospheric circulation. Clim. Res. 23, 111-129.
  • 5. Jenkinson, A.F., Collison, F.P., 1977. An initial climatology of gales over the North Sea. Synoptic Climatol. Branch Memorandum, No. 62. Meteorological Office, Bracknell.
  • 6. Kahru, M., Elmgren, R., Savchuk, O.P., 2016. Changing seasonality of the Baltic Sea. Biogeosciences 13, 1009-1018. https://doi.org/10.5194/bg-13-1009-2016
  • 7. Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Solodovnik, I., Meirink, J.F., Devasthale, A., Kothe, S., Jääskeläinen, E., Sedlar, J., Benas, N., van Zadelhoff, G.-J., Stein, D., Finkensieper, S., Håkansson, N., Hollmann, R., Kaiser, J., Werscheck, M., 2020. CLARA-A2.1: CM SAF cLoud, Albedo and surface RAdiation dataset from AVHRR data — Edition 2.1, Satellite Application Facility on Climate Monitoring. https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002_01
  • 8. Kendall, M.G., 1975. Rank Correlation Methods, 4th edn., Charles Griffin, London. Mann, H.B., 1945. Non—parametric test against trend. Econometrica 13 (3), 245-259. https://doi.org/10.2307/1907187
  • 9. Ohvril, H., Teral, H., Neiman, L., Kannel, M., Uustare, M., Tee, M., Russak, V., Okulov, O., Jõeveer, A., Kallis, A., Ohvril, T., Terez, E.I., Terez, G.A., Gushchin, G.K., Abakumova, G.M., Gorbarenko, E.V., Tsvetkov, A.V., Laulainen, N., 2009. Global dimming and brightening versus atmospheric column transparency, Europe, 1906—2007. J. Geophys. Res.-Atmos. 114, D00D12. https://doi.org/10.1029/2008JD010644
  • 10. Parding, K.M., Liepert, B.G., Hinkelman, L.M., Ackerman, T.P., Dagestad, K., Olseth, J.A., 2016. Influence of Synoptic Weather Patterns on Solar Irradiance Variability in Northern Europe. J. Climate 29, 4229-4250. https://doi.org/10.1175/JCLI- D- 15- 0476.1
  • 11. Park, B., Kim, Y., Min, S., Lim, E., 2018. Anthropogenic and Natural Contributions to the Lengthening of the Summer Season in the Northern Hemisphere. J. Climate 31, 6803-6819. https://doi.org/10.1175/JCLI-D-17-0643.1
  • 12. Peña-Ortiz, C., Barriopedro, D., García-Herrera, R., 2015. Multidecadal Variability of the Summer Length in Europe. J. Climate 28, 5375-5388. https://doi.org/10.1175/JCLI-D-14-00429.1
  • 13. Pfeifroth, U., Bojanowski, J.S., Clerbaux, N., Manara, V., Sanchez-Lorenzo, A., Trentmann, J., Walawender, J.P., Hollmann, R., 2018. Satellite-based trends of solar radiation and cloud parameters in Europe. Adv. Sci. Res. 15, 31-37. https://doi.org/10.5194/asr-15-31-2018
  • 14. Philipp, A., Beck, C., Esteban, P., Kreienkamp, F., Krennert, T., Lochbihler, K., Lykoudis, S.P., Pianko-Kluczynska, K., Post, P., Alvarez, D.R., Spekat, A., 2014. cost733class-1.2 User guide. University of Augsburg, Augsburg, Germany.
  • 15. Philipp, A., Beck, C., Huth, R., Jacobeit, J., 2016. Development and Comparison of Circulation Type Classifications Using the COST 733 Dataset and Software. Int. J. Climatol. 36, 2673-2691. https://doi.org/10.1002/joc.3920
  • 16. Post, P., Aun, M., 2020. Changes in satellite-based cloud parameters in the Baltic Sea region during spring and summer (1982—2015). Adv. Sci. Res. 17, 219-225. https://doi.org/10.5194/asr-17-219-2020
  • 17. Post, P., Truija, V., Tuulik, J., 2002. Circulation weather types and their influence on temperature and precipitation in Estonia. Boreal Environ. Res. 7 (3), 281-289.
  • 18. Ruosteenoja, K., Markkanen, T., Räisänen, J., 2020. Thermal sea-sons in northern Europe in projected future climate. Int. J. Climatol. 40, 4444-4462. https://doi.org/10.1002/joc.6466
  • 19. Russak, V., 2009. Changes in solar radiation and their influence on temperature trend in Estonia (1955—2007). J. Geophys. Res.-Atmos. 114, D00D01. https://doi.org/10.1029/2008JD010613
  • 20. Sanchez-Lorenzo, A., Wild, M., Brunetti, M., Guijarro, J.A., Hakuba, M.Z., Calbó, J., Mystakidis, S., Bartok, B., 2015. Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939—2012). J. Geophys. Res.-Atmos. 120, 9555-9569. https://doi.org/10.1002/2015JD023321
  • 21. Sfîcă , L., Beck, C., Nita, A.-I., Voiculescu, M., Birsan, M.-V., Philipp, A., 2021. Cloud cover changes have been driven by at-mospheric circulation in Europe during the last decades. Int. J. Climatol. 41 (Suppl. 1), E2211-E2230. https://doi.org/10.1002/joc.6841
  • 22. Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C.N., Dutton, E.G., Forgan, B., Kallis, A., Russak, V., Tsvetkov, A., 2005. From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth’s Surface. Science 308, 847-850. https://doi.org/10.1126/science.1103215
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5fa128b5-b261-4718-a3a6-a6cb4b057cec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.