Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 36, No. 2 | 235--241
Tytuł artykułu

Sol-gel derived CdS nanocrystalline thin films: optical and photoconduction properties

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High-quality CdS nanocrystalline thin films were grown by sol-gel spin coating method at different solution temperatures on glass substrates. As-deposited films exhibited nanocrystalline phase with hexagonal wurtzite structure and showed good adhesion and smooth surface morphology. It was clearly observed that the crystallinity of the thin films improved with the increase in solution temperature. Crystallites sizes of the films also increased and were found to be in the range of 10 mm to 17 nm. The influence of the growth mechanism on the band and sub-band gap absorption of the films was investigated using UV-Vis and photothermal deflection spectroscopy (PDS). The band gap values were calculated in the range of 2.52 eV to 2.75 eV. The band gap decreased up to 9 % with the increase in solution temperature from 45 °C to 75 °C. Absorption coefficients estimated by PDS signal showed the significant absorption in low photon energy region of 1.5 eV to 2.0 eV. The dark and illuminated I-V characteristics revealed that the films were highly photosensitive. The results demonstrated the potential applications of sol-gel grown CdS nanocrystalline thin films as photoconductors and optical switches.
Wydawca

Rocznik
Strony
235--241
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Department of Physics, College of Science, University of Ha’il, P.O. Box-2440, Ha’il, Saudi Arabia, zrazakhan05@gmail.com
autor
  • Laser Spectroscopy Lab, Department of Physics, Jamia Millia Islamia, New Delhi-110025, India
autor
  • Laser Spectroscopy Lab, Department of Physics, Jamia Millia Islamia, New Delhi-110025, India
autor
  • Laser Spectroscopy Lab, Department of Physics, Jamia Millia Islamia, New Delhi-110025, India
Bibliografia
  • [1] HUSHAM M., HASSAN Z., SELMAN A.M., ALLAM N.K., Sensor. Actuat. A-Phys., 230 (2015), 9.
  • [2] CHALLA K.K., MAGNONE E., KIM E.T., Mater. Lett., 85 (2012), 135.
  • [3] SHAIKH S.U., DESALE D.J., SIDDIQUI F.Y., GHOSH A., BIRAHADAR R.B., GHULE A.V., SHARMA R., Mater. Res. Bull., 47 (2012), 3440.
  • [4] PANDA R., RATHORE V., RATHORE M., SHELKE V., BADERA N., CHANDRA L.S.S., JAIN D., GANGRADE M., SHRIPATI T., GANESAN V., Appl. Surf. Sci., 258 (2012), 5086.
  • [5] MAHDI M.A., HASSAN Z., NG S.S., HASSAN J.J., MOHD BAKHORI S.K., Thin Solid Films, 520 (2012), 3477.
  • [6] GAO T., LI Q.H., WANG T.H., Appl. Phys. Lett., 86 (2005), 173105.
  • [7] IKHMAYIES S.J., JUWHARI H.K., AHMAD-BITR R.N., J. Lumin., 141 (2013), 27.
  • [8] RANJITHA A., MUTHUKUMARASAMY N., THAMBIDURAI M., VELLUTHAPILLAI D., BALASNDRAPRABHA R., AGILAN S., J. Mater. Sci. Mater. El., 24 (2013), 3014.
  • [9] SALAS-VILLASENOR A.L., MEJIA I, SOTELOLERMA M., GUO Z.B., ALSHAREEF H.N., QUEVEDO-LOPEZ M.A., Semicond. Sci. Technol., 29 (2014), 85001.
  • [10] HUR S.G., KIM E.T., LEE J.H., KIM G.H., YOON S.G., J. Vac. Sci. Technol., B 26 (2008), 1334.
  • [11] KUMAR S.G., RAO K.S.R K., Energ. Environ. Sci., 7 (2014), 45.
  • [12] XU R., WANG X., SONG L., LIU W., JI A., YANG F., LI J., Opt. Express, 20 (2012), 5061.
  • [13] TOYAMA T., SEO Y., KONISHI T., OKAMOTO H., MORIMOTO R., NISHIKAWA Y., TSUTSUMI Y., Thin Solid Films, 555 (2014), 148.
  • [14] ILAHI S., SAIDI F., HAMILA R., YACOUBI N., AUVRAY L., MAAREF H., Curr. Appl. Phys., 13 (2013), 610.
  • [15] MUNIRAH, KHAN M.S., AZIZ A., RAHMAN S.A., KHAN Z.R., Mater. Sci. Semicond. Proc., 16 (2013), 1894.
  • [16] RAVICHANDRAN K., PHILOMINATHAN P., Appl. Surf. Sci., 255 (2009), 5736.
  • [17] KHAN S.A., AL-HAZMI F.S., AL-SANOSI A.M., FAIDAH A.S., YAGHMOUR S.J., AL GHAMDI A.A., Physica B, 404 (2009), 1415.
  • [18] KHAN Z.R., ZULFEQUAR M., KHAN M.S., Mater. Sci. Eng. B-Adv., 174 (2010), 145.
  • [19] ZIABARI A.A., GHODSI F.E., J. Lumin., 141 (2013) 121.
  • [20] HANKARE P.P., CHATE P.A., SATHE D.J., Solid State Sci., 11 (2009) 1226.
  • [21] AZIZ A., NARSIMHAN K.L., Synth. Met., 114 (2000) 133.
  • [22] AZIZ A., NARSIMHAN K.L., Synth. Met., 131 (2002) 71.
  • [23] WU C., BUBE R.H., J. Appl. Phys., 45 (1974), 648.
  • [24] GAO T., LI Q.H., WANG T.H., Appl. Phys. Lett., 86 (2005), 173105.
  • [25] DEMIRA R., GODE F., Chalcogenide Lett., 12 (2015), 43.
  • [26] ORTON J.W., GOLDSMITH B.J., CHAPMAN J.A., POWELL M.J., J. Appl. Phys., 53 (1982), 1602.
  • [27] KIND H., YAN H., MESSER B., LAW M., YANG P., Adv. Mater., 14 (2002), 158.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5f858145-f4e8-401b-beb7-a82ae71748f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.