Czasopismo
2018
|
Vol. 88, nr 1
|
12--17
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The article presents the results of research on ZnO nanopowder prepared using sol-gel method that is the easy process enabling us to control shape and size of particles The purpose of this article is to synthesized ZnO nanostructures by sol-gel method and characterized them for use in dye sensitized solar cells. Design/methodology/approach: Zinc oxide nanopowder was synthesized by using zinc acetate dehydrate as a precursor. The prepared nanopowder has been subjected to structural analysis using a transmission electron microscope (TEM). Scanning Electron Microscopic (SEM) images were taken with a Zeiss Supra 35. Qualitative studies of chemical composition were also performed using the Energy Dispersive Spectrometer (EDS). The structure of zinc oxide was investigated by X-ray crystallography The absorbance of zinc oxide layers with and without dye were measured by Thermo Scientific Evolution 220 spectrophotometer equipped with a xenon lamp in the wavelength range from 190 nm to 1100 nm. Findings: Sol-gel method allows the formation of uniform nanoparticles of zinc oxide. The nanoparticles have been successfully used in photoelectrode of dye sensitized solar cell. The light harvesting efficiency of the electrode it remains in a wide spectral range above 85%, which gives better results than in the case of titanium dioxide. Research limitations/implications: The next step in the research will be to investigate the ZnO/NiO composite on the properties of the photoelectrode of dye sensitized solar cell. Practical implications: he unique properties of produced ZnO nanostructural materials have caused their interest in such fields as medicine, transparent electronics and photovoltaics. Originality/value: The ZnO nanoparticles were prepared using sol-gel method and then effectively used in the photoanode of dye sensitized solar cell.
Rocznik
Tom
Strony
12--17
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, marek.szindler@polsl.pl
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
- [1] V.R. Venu Gopal, S. Kamila, Effect of temperature on the morphology of ZnO nanoparticles: a comparative study, Applied Nanoscience 3-4/7 (2017) 75-82.
- [2] Z. Liu, Y. Li, Ch. Liu, J. Ya, W. Zhao, E. Lei, D. Zhao, L. An, Performance of ZnO dye-sensitized solar cells with various nanostructures as anodes, Solid State Sciences 13/6 (2011) 1354-1359.
- [3] S.S. Kulkarni, Optical and Structural Properties of Zinc Oxide Nanoparticles, International Journal or Advanced Research in Physical Science 2/1 (2015) 14-18.
- [4] O.M. Ozkendir, S. Yildirimcan, A. Yuzer, K. Ocakoglu, Crystal and electronic structure study of Mn doped wurtzite ZnO nanopatticles, Progress in Natural Science: Materials International 26/4 (20 16) 347-353.
- [5] J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO Nanostructures Using Sol-Gel Method, Procedia Chemistry 19 (2016) 211-216.
- [6] A. Kargari, A. Tavakoli, A review or methods for synthesis of nanostructured metals with emphasis on iron compounds, Chemical Papers 61/3 (2007) 151-170.
- [7] N. Ain Samat, R.M. Nor, Sol-gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts, Ceramics International 39 (2013) S545-S548.
- [8] B. Sunandan, D. Joydeep, Hydrothermal growth of ZnO nanostructures. Science and Technology or Advanced Materials 10 (2009) 013001.
- [9] E.G. Lori, D.Y. Benjamin, L. Matt, Z. David, Y. Peidong, Solution grown zinc oxide nanowires, Inorganic Chemistry 45 (2006) 7535-7543.
- [10] R. Vittala, K. Hoa, Zinc oxide based dye-sensitized solar cells: A review, Renewable and Sustainable Energy Reviews 70 (2017) 920-935.
- [11] M.S. Akhtar, M.A. Khan, M.S. Jeon, O.B. Yang, Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells, Electro Acta 53 (2008) 7869-7874.
- [12] Y. Selk, M. Minnermann, T. Ockermann, M. Wark, J. Caro, Solid-state dye-sensitized ZnO solar cells prepared by low-temperature methods. Journal or Applied Electrochemistry 41/4 (2011) 445-452.
- [13] K. Rajesh, U. Ahmad, K. Girish, S. Hari Sing, K. Anil, M.S. Akhtar, Zinc oxide nanostructure-based dye-sensitized solar cells, Journal of Materials Science 52/9 (2017) 4743-4795.
- [14] H. Tsubomura, Y. Matsumura, Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell, Nature 261 (1976) 402-403.
- [15] J. Desilvestro, M. Graetzel, L. Kavan, J. Moser, J. Augustynski, Highly efficient sensitization of titanium dioxide, Journal of the American Chemical Society 107/10 (1985) 2988-2990.
- [16] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5f2d8fa9-05ab-4800-8e5b-31a6870b12cc