Warianty tytułu
Języki publikacji
Abstrakty
A size-dependent model for cross-ply composite laminated plate bonded with PZT actuators is developed by using re-modified couple stress theory (RMCST), which only uses two material length scale parameters to describe the size-dependent effect. An equivalent bending moment model and a refined model are developed by using two different ways. The analytical solution of equivalent bending moment model for simply supported composite laminated plate is obtained. The equilibrium equation of motion and corresponding boundary constraints of the refined model are established from the potential energy principle. The Ritz approximate solution of transverse deflection of the refined model indicates that the size-effect cannot be ignored in micro-scale. Numerical examples are given to account for the effect of material length scale parameters and dimensions of piezoelectric actuators on the defection of composite laminated plate.
Czasopismo
Rocznik
Tom
Strony
177--205
Opis fizyczny
Bibliogr. 59 poz., rys.
Twórcy
autor
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
autor
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China, sjzheng@nuaa.edu.cn
autor
- Pan Asia Technical Automotive Center Co. Ltd., Shanghai 2121, PR China
Bibliografia
- 1. S.C. Her, C.S. Lin, Deflection of cross-ply composite laminates induced by piezoelectric actuators, Sensors, 10, 719–733, 2010.
- 2. E.F. Crawley, J. De Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA Journal, 25, 1373–1385, 1987.
- 3. G.L. Huang, C.T. Sun, The dynamic behaviour of a piezoelectric actuator bonded to an anisotropic elastic medium, International Journal of Solids and Structures, 43, 1291–1307, 2006.
- 4. E. Dimitriadis, C. Fuller, C. Rogers, Piezoelectric actuators for distributed vibration excitation of thin plates, Journal of Vibration and Acoustics, 113, 100–107, 1991.
- 5. Q. Luo, L. Tong, High precision shape control of plates using orthotropic piezoelectric actuators, Finite Elements in Analysis and Design, 42, 1009–1020, 2006.
- 6. J.-C. Lin, M. Nien, Adaptive modeling and shape control of laminated plates using piezoelectric actuators, Journal of Materials Processing Technology, 189, 231–236, 2007.
- 7. C. Bowen, R. Butler, R. Jervis, H. Kim, A. Salo, Morphing and shape control using unsymmetrical composites, Journal of Intelligent Material Systems and Structures, 18, 89–98, 2007.
- 8. P. Giddings, C. Bowen, R. Butler, H. Kim, Characterisation of actuation properties of piezoelectric bi-stable carbon-fibre laminates, Composites Part A: Applied Science and Manufacturing, 39, 697–703, 2008.
- 9. J.Y. Park, Y.J. Yee, H.J. Nam, J.U. Bu, [in:] Microwave Symposium Digest, 2001 IEEE MTT-S International. (IEEE, 2001), vol. 3, pp. 2111–2114.
- 10. S. Tadigadapa, K. Mateti, Piezoelectric MEMS sensors: state-of-the-art and perspectives, Measurement Science and Technology, 20, 092001, 2009.
- 11. N. Fleck, G. Muller, M. Ashby, J. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Metallurgica et Materialia, 42, 475–487, 1994.
- 12. D. Lam, F. Yang, A. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51, 1477–1508, 2003.
- 13. R. Mindlin, H. Tiersten, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11, 415–448, 1962.
- 14. R.A. Toupin, Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, 11, 385–414, 1962.
- 15. A.C. Eringen, Nonlocal polar elastic continua, International Journal of Engineering Science, 10, 1–16, 1972.
- 16. F. Yang, A. Chong, D. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39, 2731–2743, 2002.
- 17. S. Park, X. Gao, Bernoulli–Euler beam model based on a modified couple stress theory, Journal of Micromechanics and Microengineering, 16, 2355, 2006.
- 18. S. Kong, S. Zhou, Z. Nie, K.Wang, The size-dependent natural frequency of Bernoulli–Euler micro-beams, International Journal of Engineering Science, 46, 427–437, 2008.
- 19. M. Kahrobaiyan, M. Asghari, M. Rahaeifard, M. Ahmadian, Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory, International Journal of Engineering Science, 48, 1985–1994, 2010.
- 20. H.M. Ma, X.L. Gao, J.N. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, 56, 3379–3391, 2008.
- 21. L.L. Ke, Y.S. Wang, Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory, Physica E: Low-dimensional Systems and Nanostructures, 43, 1031–1039, 2011.
- 22. Y. Fu, J. Zhang, Modeling and analysis of microtubules based on a modified couple stress theory, Physica E: Low-dimensional Systems and Nanostructures, 42, 1741–1745, 2010.
- 23. H.M. Ma, X.-L. Gao, J.N. Reddy, a nonclassical Reddy-Levinson beam model based on a modified couple stress theory, International Journal for Multiscale Computational Engineering, 8, 167–180, 2010.
- 24. G.C. Tsiatas, A new Kirchhoff plate model based on a modified couple stress theory, International Journal of Solids and Structures, 46, 2757–2764, 2009.
- 25. J. Abdi, A. Koochi, A. Kazemi, M. Abadyan, Modeling the effects of size dependence and dispersion forces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory, Smart Materials and Structures, 20, 055011, 2011.
- 26. Y.T. Beni, A. Koochi, M. Abadyan, Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS, Physica E: Low-dimensional Systems and Nanostructures, 43, 979–988, 2011.
- 27. M. Komijani, J.N. Reddy, A.J.M Ferreira, Nonlinear stability and vibration of pre/post-buckled microstructure-dependent FGPM actuators, Meccanica, 49, 2729–2745, 2014.
- 28. Y.S. Li, W.J. Feng, Z.Y. Cai, Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory, Composite Structures, 115, 41–50, 2014.
- 29. A.A. Jandaghian, O. Rahmani, Size-dependent free vibration analysis of functionally graded piezoelectric plate subjected to thermo-electro-mechanical loading, Journal of Intelligent Material Systems and Structures, 28, 3039–3053, 2017.
- 30. Y.S. Li, E. Pan, Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory, International Journal of Engineering Science, 97, 40–59, 2015.
- 31. R. Ansari, M.A. Ashrafi, S. Hosseinzadeh, Vibration Characteristics of Piezoelectric Microbeams Based on the Modified Couple Stress Theory, Shock and Vibration, 2014, 598292-1-12, 2014.
- 32. A.G. Arani, M. Abdollahian, R. Kolahchi, Nonlinear vibration of a nanobeam elastically bonded with a piezoelectric nanobeam via strain gradient theory, International Journal of Mechanical Science, 100, 32–40, 2015.
- 33. A. Abdollahi, C. Peco, D. Millán, M. Arroyo, I. Arias, Computational evaluation of the flexoelectric effect in dielectric solids, Journal of Applied Physics, 116, 093502, 2014.
- 34. Z. Yan, L.Y. Jiang, Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams, Journal of Applied Physics, 113, 194102-194102-194109, 2013.
- 35. S. Zheng, M. Chen, Z. Li, H. Wang, Size-dependent constituent equations of piezoelectric bimorphs, Composite Structures, 150, 1–7, 2016.
- 36. M. Chen, S. Zheng, Size-dependent static bending of a micro-beam with a surface-mounted 0–1 polarized PbLaZrTi actuator under various boundary conditions, Journal of Intelligent Material Systems and Structures, 28, 2920–2932, 2017.
- 37. M. Arefi, A.M. Zenkour, Vibration and bending analysis of a sandwich microbeam with two integrated piezo-magnetic face-sheets, Composite Structures, 2016.
- 38. M. Arefi, A.M. Zenkour, Transient analysis of a three-layer microbeam subjected to electric potential, International Journal of Smart and Nano Materials, 8, 20–40, 2017.
- 39. S. Sahmani, M. Bahrami, Size-dependent dynamic stability analysis of microbeams actuated by piezoelectric voltage based on strain gradient elasticity theory, Journal of Mechanical Science and Technology, 29, 325–333, 2015.
- 40. A. Li, S. Zhou, S. Zhou, B. Wang, Size-dependent analysis of a three-layer microbeam including electromechanical coupling, Composite Structures, 116, 120–127, 2014.
- 41. W.J. Chen, M. Xu, L. Li, A model of composite laminated Reddy plate based on new modified couple stress theory, Composite Structures, 94, 2143–2156, 2012.
- 42. W.J. Chen, X.P. Li, Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory, Archive of Applied Mechanics, 83, 431–444, 2013.
- 43. W. Chen, Y. Wang, A model of composite laminated Reddy plate of the global-local theory based on new modified couple-stress theory, Mechanics of Advanced Materials and Structures, 23, 636–651, 2016.
- 44. M. Mohammadabadi, A. Daneshmehr, M. Homayounfard, Size-dependent thermal buckling analysis of micro composite laminated beams using modified couple stress theory, International Journal of Engineering Science, 92, 47–62, 2015.
- 45. Ch. Wanji. W. Chen, K.Y. Sze, A model of composite laminated Reddy beam based on a modified couple-stress theory, Composite Structures, 94, 2599–2609, 2012.
- 46. H.A.C. Tilmans, R. Legtenberg, Electrostatically driven vacuum-encapsulated polysilicon resonators: Part II. Theory and performance, Sensors and Actuators A: Physical, 45, 67–84, 1994.
- 47. R.C. Batra, M. Porfiri, D. Spinello, Review of modeling electrostatically actuated microelectromechanical systems, Smart Materials and Structures, 16, R23-R31, 2007.
- 48. M. Ruan, J. Shen, C.B. Wheeler, Latching microelectromagnetic relays, Sensors and Actuators A: Physical, 91, 346–350, 2001.
- 49. G. Rezazadeh, F. Khatami, A. Tahmasebi, Investigation of the torsion and bending effects on static stability of electrostatic torsional micromirrors,Microsystem Technologies, 13, 715–722, 2007.
- 50. M.H. Korayem, A. Homayooni, The size-dependent analysis of multilayer microcantilever plate with piezoelectric layer incorporated voltage effect based on a modified couple stress theory, European Journal of Mechanics - A/Solids, 61, 59–72, 2017.
- 51. G.M. Rebeiz, RF MEMS: Theory, design, and technology, Microwaves & Rf, 87–120, 2004.
- 52. J.N. Reddy, Theory and Analysis of Elastic Plates and shells, CRC Press, 2006.
- 53. S.J. Zheng, F. Dai, Z. Song, Active control of piezothermoelastic FGM shells using integrated piezoelectric sensor/actuator layers, International Journal of Applied Electromagnetics and Mechanics, 30, 107–124, 2009.
- 54. S. Zheng, L. Tong, Q. Luo, Finite element formulations and algorithms for coupled multiphysics analysis of 0-1 and 0-3 polarized PLZT actuators, International Journal of Applied Electromagnetics and Mechanics, 49, 513–530, 2015.
- 55. N.J. Pagano, Exact solutions for rectangular bidirectional composites and sandwich plates, Journal of Composite Materials, 4, 20–34, 1970.
- 56. S. Zheng, Z. Li, M. Chen, H. Wang, Size-dependent static bending and free vibration of 0–3 polarized PLZT microcantilevers, Smart Materials and Structures, 25, 085025, 2016.
- 57. F. Mehralian, Y. Tadi Beni, M. Karimi Zeverdejani, Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations, Physica B: Condensed Matter, 521, 102–111, 2017.
- 58. Y. Xiao, B.L. Wang, S.J. Zhou, Pull-in voltage analysis of electrostatically actuated MEMS with piezoelectric layers: a size-dependent model, Mechanics Research Communications, 66, 7–14, 2015.
- 59. J.B. Shen, H.T. Wang, S.J. Zheng, Size-dependent pull-in analysis of a composite laminated micro-beam actuated by electrostatic and piezoelectric forces: generalized differential quadrature method, International Journal of Mechanical Science, 135, 353–361, 2018.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5f1be2ba-d0e9-4043-b2a4-6d986f5e4dd2