Warianty tytułu
Języki publikacji
Abstrakty
Knowing the material properties is of a crucial importance when planning to manufacture some structure. That is true for the steel structures, as well. Thus, for the proper planning of a certain steel part or a structure production, one must be aware of the properties of the material, to be able to make a qualified decision, which material should be used. Considering that the manufacturing of steel products is constantly growing in various branches of industry and engineering, the problem of predicting the material properties, needed to satisfy the requirements for the certain part efficient and reliable functioning, becomes an imperative in the design process. A method of predicting four material properties of the two stainless steels, by use of the artificial neural network (ANN) is presented in this article. Those properties were predicted based on the particular steels’ known chemical compositions and the corresponding material properties available in the Cambridge Educational System EDU PACK 2010 software, using neural network module of MathWorks Matlab. The method was verified by com-paring the values of the material properties predicted by this method to known values of properties for the two stainless steels, X5CrNi18-10 (AISI 304), X5CrNiMo17-12-2 (AISI 316). The difference be-tween the two sets of values was below 5% and, in some cases, even negligible.
Czasopismo
Rocznik
Tom
Strony
225--232
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia, djordje.ivkovic@fink.rs
autor
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia, dusan.arsic@fink.rs
autor
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia, adam@kg.ac.rs
autor
- Research Centre, University of Žilina, Univerzitna 8215/1, 010 26 Žilina, Slovakia, ruzica.nikolic@uniza.sk
autor
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia, andjamit99@gmail.com
autor
- Faculty of Mechanical Engineering, University of Žilina, Univerzitna 8215/1, 010 26 Žilina, Slovakia, otakar.bokuvka@fstroj.uniza.sk
Bibliografia
- 1. Basheer, I. A., Hajmeer, M., 2000. Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43, 3-31, DOI: 10.1016/S0167-7012(00)00201-3
- 2. Bursać, M., Jevtić, S., Tričković, G., 2021. Application of artificial neural networks for predictions of failure of railway signaling devices. Proceedings of Third International Conference “Transport for Today’s Society “, 14-16.10.2021, Bitola, North Macedonia, Faculty of Technical Sciences Bitola, 194-197. https://ttsconf.org/wp-content/uploads/2022/04/p45.pdf
- 3. Ciocan, R., Petulescu, P., Ciobanu, D., Roth, D. J., 2000. The use of the neural networks in the recognition of the austenitic steel types. NDT&E International 33, 85-89, DOI: 10.1016/S0963-8695(99)00032-8
- 4. Dobrzanski, L.A., Sitek, W., 1999, The modelling of hardenability using neu-ral networks. Journal of Materials Processing Technology, 92-93, 8-14, DOI: 10.1016/S0924-0136(99)00174-0
- 5. EN 1990:2002. Eurocode- Basis of structural design. https://www.phd.eng.br/wp-content/uploads/2015/12/en.1990.2002.pdf
- 6. EN 1993-1-1:2005. Eurocode 3 - Design of steel structures-Part 1-1: General rules and rules for buildings
- 7. EN 1993-1-2:2005. Eurocode 3 - Design of steel structures - Part 1-2: General rules - structural fire design https://www.phd.eng.br/wp-content/uploads/2015/12/en.1993.1.2.2005.pdf
- 8. EN 1993-1-3:2006. Eurocode 3 - Design of steel structures - Part 1-3: General rules - Supplementary rules for cold formed members and sheeting https://www.phd.eng.br/wp-content/uploads/2015/12/en.1993.1.3.2006.pdf
- 9. EN 1993-1-4:2006. Eurocode 3-Design of steel structures - Part 1-4: General rules - Supplementary rules for stainless steels https://www.phd.eng.br/wp-content/uploads/2015/12/en.1993.1.4.2006.pdf
- 10. EN 10088-1:2005. Stainless steels - Part 1: List of stainless steels https://standards.iteh.ai/catalog/standards/cen/952db42f-8160-4518-8932-c51bc76f8715/en-10088-1-2005
- 11. EN 10088-2:2005. Stainless steels - Part 2: Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for general purposes https://standards.iteh.ai/catalog/standards/cen/5da77ead-c665-4c16-a063-1b086a1543c2/en-10088-2-2005
- 12. EN 10088-3:2005. Stainless steels - Part 3: Technical delivery conditions for semi-finished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purposes. https://standards.iteh.ai/catalog/standards/cen/4e6c80d2-c72d-42b3-aeae-2564ae23eb38/en-10088-3-2005
- 13. EN 10088-4:2009. Stainless steels - Part 4: Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for construction purposes https://standards.iteh.ai/catalog/standards/cen/a9506eec-011c-47b3-9313-6ec0bb544a7b/en-10088-4-2009
- 14. EN 10088-5:2009. Stainless steels - Part 5: Technical delivery conditions for bars, rods, wire, sections and bright products of corrosion resisting steels for construction purposes https://standards.iteh.ai/catalog/standards/cen/affdda76-226f-42d3-b4c7-5d00eba17733/en-10088-5-2009
- 15. Ivković, Dj., Arsić, D. Adamović, D., Nikolić, R., Mitrović, A., Bokuvka, O., 2024. Predicting the yield stress and tensile strength of two stainless steels using artificial intelligence. Proceedings of The 27th International Seminar of Ph.D. students - SEMDOK 2024, 05-07.02.2024, Western Tatras - Zuberec, Slovakia, 57-62.
- 16. Jovanović, M., Lazić, V., Arsić, D., 2017. Material Science, Faculty of Engi-neering. University of Kragujevac, Kragujevac, Serbia, ISBN 978-86-6335-042-7. (in Serbian)
- 17. Kim, D., 2023. Text Classification Based on Neural Network Fusion. Technical Journal, 17(3), 359-366, DOI: 10.31803/tg-20221228154330
- 18. Knap, M., Lamut, J., Rozman, A., Falkus, J., 2008. The prediction of harden-ability using neuronal networks. Archives of Metallurgy and Materials, 53(3), 761-766, DOI: 10.2478/amm-2014-0021
- 19. Knap, M., Falkus, J., Rozman, A., Konopka, K., Lamut, J., 2014, The Predic-tion of Hardenability using Neural Networks. Archives of Metallurgy and Materials, 59(1), 133-136, DOI: 10.2478/amm-2014-0021
- 20. Kusiak, J., Kuziak, R., 2002. Modelling of microstructure and mechanical properties of steel using the artificial neural network. Journal of Materials Processing Technology, 127(1), 115-121, DOI: 10.1016/S0924-0136(02)00278-9
- 21. Lee, J-G., Jun, S., Cho, -W., Lee, H., Kim, G. B., Seo, J. B., Kim, N., 2017. Deep Learning in Medical Imaging: General Overview. Korean Journal of Radiology, 18(4), 570-584, DOI: 10.3348/kjr.2017.18.4.570
- 22. Lisjak, D., 2004. Application of various artificial intelligence methods in material selection. Doctoral dissertation, Faculty of Mechanical Engineering, University of Zagreb, Zagreb, Croatia
- 23. Menasri, N., Aimeur, N., 2023. Faults diagnostics of cement draft fan using artificial neural network (ANN). Structural Integrity and Life, 23(1), 23-29. http://divk.inovacionicentar.rs/ivk/ivk23/023-IVK1-2023-NM-NA.pdf
- 24. Mukherjee, A., Schmauder, S., Ruhle, M., 1995. Artificial neural networks for the prediction of mechanical behavior of metal matrix composites. Acta Metall. Mater. 43(11), 4083–4091, https://edisciplinas.usp.br/ pluginfile.php/5791436/mod_resource/content/1/Artigo%204.pdf
- 25. Qamar, R., Zardari, B. A., 2023. Artificial Neural Networks: An Overview. Mesopotamian journal of Computer Science, 2023, 130-139, DOI: 10.58496/MJCSC/2023/015
- 26. Sitek, W., Dobrzanski, L. A., Zacłona, J., 2004. The modelling of high-speed steels’ properties using neural networks. Journal of Materials Processing Technology 157-158, 245-249, DOI: 10.1016/j.jmatprotec.2004.09.037
- 27. Sitek, W., Trzaska, J., Gemechu, W. F., 2022. Modelling and Analysis of the Synergistic Alloying Elements Effect on Hardenability of Steel. Archives of foundry engineering, 4, 102-108, DOI: 10.24425/ afe.2022.143957
- 28. Sorić, J., Stanić, M., Lesičar, T., 2023. On neural network application in solid mechanics. Transactions of FAMENA, 47(2), 45-66, DOI: 10.21278/TOF.472053023
- 29. Tylek, I., Kuchta, K., 2014. Mechanical properties of structural stainless steels. Technical Transactions Civil Engineering, 4-B(12), 59-80, https://www.ejournals.eu/Czasopismo-Techniczne/2014/Budownictwo-Zeszyt-4-B-(12)-2014/art/5743/
- 30. Tylek, I., Kuchta, K., 2014. Mechanical properties of structural stainless steels. Technical Transactions Civil Engineering, 4-B(12), 59-80, https://www.ejournals.eu/Czasopismo-Techniczne/2014/Budownictwo-Zeszyt-4-B-(12)-2014/art/5743/
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5ed26cc7-4ee7-4b0f-9095-0872f67e44d5