Warianty tytułu
Języki publikacji
Abstrakty
In this work we examine significant theoretical issues related to the constitutive modelling of a two-phase shape memory alloy which undergoes large deformations. For this purpose, we propose a new generalized plasticity based model. The model is based on a standard fractions approach and considers a local multiplicative decomposition of the deformation gradient into elastic and inelastic (transformation induced) parts, as its basic kinematic assumption. We also assess the ability of the model in simulating several patterns of the complex behavior of the material in question, by three representative numerical examples. These examples comprise a standard uniaxial tension problem, a torsion problem and an additional problem dealing with non-conventional pseudoelastic response.
Czasopismo
Rocznik
Tom
Strony
355–-380
Opis fizyczny
Bibliogr. 56 poz., wykr.
Twórcy
autor
- ) Department of Civil Engineering Demokritos University of Thrace 12 Vassilissis Sofias Street, Xanthi 67100, Greece, vpanoska@civil.duth.gr
autor
- Autonomic & Grid Computing Athens Information Technology Peania 19002, Greece
autor
- Department of Civil Engineering Demokritos University of Thrace 12 Vassilissis Sofias Street, Xanthi 67100, Greece
Bibliografia
- 1. Abeyaratne R., Bhattacharya K., Knowles J.K., Strain-energy functions with multiple local minima: modeling phase transformations using finite thermoelasticity, [in:] Nonlinear Elasticity: Theory and applications, Y. Fu, R.W. Ogden [Eds.], Cambridge Univ. Press, 433–490, 2001.
- 2. Ball J.M., James R.D., Fine phase mixtures and minimizers of energy, Arch. Rational Mech. Anal., 100, 13–52, 1987.
- 3. Ho K., Harmon N.B., First principle total energy calculations applied to displacive transformations, Mater. Sci. Eng., Structural Materials Properties and Processing, 127, 155– 165, 1990.
- 4. Falk F., Konopka P., Three-dimensional Landau theory describing the martensitic phase transformation of shape memory alloys, J. Phys. Condens. Matter., 2, 61–77, 1990.
- 5. Lindgard P.A., Theory and modeling of the martensitic transformation, J. Phys. IV C4, 3–12, 1991.
- 6. Artemev A., Wang Y., Khachaturyan A., Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stresses, Acta Mater., 48, 2503–2518, 2000.
- 7. Levitas V.I., Preston D.L., Thermomechanical lattice instability and phase field theory of martensitic phase transformations, twinning and dislocations at large strains, Physics Letters A, 343, 32–39, 2005.
- 8. Arndt M., Griebel M., Nova’c V., Rubi’cek T., ˇ Sittner P. ˇ , Martensitic transformation in NiMnGa single crystals: Numerical simulation and experiments, Int. J. Plasticity, 22, 1943–1961, 2006.
- 9. Tanaka K., Iwasaki A., A phenomenological theory of transformation superelasticity, Eng. Fract. Mech., 21, 709–720, 1985.
- 10. Liang C., Rogers C.A., One-dimensional thermomechanical constitutive relations for shape memory materials, J. Intell. Mater. Systems Struct., 1, 207–234, 1990.
- 11. Raniecki B., Lexcellent C., Tanaka K., Thermodynamic models of pseudoelastic behavior of shape memory alloys, Arch. Mech., 44, 261–284, 1992.
- 12. Boyd J.G., Lagoudas D.C., Thermomechanical response of shape memory alloy composites, J. Intell. Mater. Systems Struct., 5, 333–346, 1994.
- 13. Ivshin Y., Pence T., A thermodynamical model for a one variant shape memory material, J. Intell. Mater. Systems Struct., 5, 455–473, 1994.
- 14. Raniecki B., Lexcellent C., Thermodynamics of isotropic pseudoelasticity in shape memory alloys, Eur. J. Mech. A. Solids, 17, 2, 185–205, 1998.
- 15. Lagoudas C.D., Entchev P.B., Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs, Mech. Matls., 36, 865–892, 2004.
- 16. Zaki W., Moumni Z., A three-dimensional model of the thermomechanical behavior of shape memory alloys, J. Mech. Phys. Solids, 55, 2455–2490, 2007.
- 17. Christ D., Reese S., A finite element model for shape-memory alloys considering thermomechanical couplings at large strains, Int. J. Solids Struct., 46, 3694–3709, 2009.
- 18. Thamburaja P., A finite-deformation-based theory for shape-memory alloys, Int. J. Plasticity, 26, 1195–1219, 2010.
- 19. Lu Z.K., Weng G.J., Martensitic transformation and stress-strain relations of shapememory alloys, J. Mech. Phys. Solids, 45, 1905–1921, 1997.
- 20. Thamburaja P., Anand L., Polycrystalline shape ,- memory materials: effect of crystallographic texture, J. Mech. Phys. Solids, 49, 709–737, 2000.
- 21. Anand L., Gurtin M.E., Thermal effects in the superelasticity of crystalline shape – memory materials, J. Mech. Phys. Solids, 51, 1015–1058, 2003.
- 22. Lubliner J., Auricchio F., Generalized plasticity and shape memory alloys, Int. J. Solids Struc., 33, 991–1004, 1996.
- 23. Panoskaltsis V.P., Bahuguna S., Soldatos D., On the thermomechanical modeling of shape memory alloys, Int. J. Non-Linear Mech., 39, 709–722, 2004.
- 24. Saint-Sulpice L., Arbab Chirani C., Calloch S., A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings, Mech. Matls., 41, 12–26, 2009.
- 25. Kan Q., Kang G., Constitutive model for triaxial transformation ratcheting of superelastic NiTi shape memory alloy at room temperature, Int. J. Plast., 26, 441–465, 2010.
- 26. Panoskaltsis V.P., Soldatos D., Triantafyllou S.P., Generalized plasticity theory for phase transformations, 11th International Conference on the mechanical behavior of materials, M. Guagliano [Ed.], CICM 11, Milano, Italy, 5–9 June 2011, Procedia Engineering 3104–3108, 2011.
- 27. Panoskaltsis V.P., Polymenakos L.C., Soldatos D., The concept of physical metric in the thermomechanical modeling of phase transformations with emphasis on shape memory alloy materials, ASME J. Eng. Mater. Technol., 135, 2, 021016 (Apr. 02, 2013) doi:10.1115/1.4023780, 2013.
- 28. Lubliner J., A maximum – dissipation principle in generalized plasticity, Acta Mech., 52, 225–237, 1984.
- 29. Lubliner J., Non-isothermal generalized plasticity, [in:] Thermomechanical Couplings in Solids, H.D. Bui, Q.S. Nyugen [Eds.], 121–133, 1987.
- 30. Auricchio F., Taylor R.L., Shape memory alloys: modeling and numerical simulations of the finite strain superelastic behavior, Computer Meth. Appl. Mech. Engrg., 143, 175– 194, 1997.
- 31. Arghavani J., Auricchio F., Naghdabadi R., Reali A., Sohrabpour S., A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation, Contin. Mech. Thermodyn., 22, 345–3623, 2010.
- 32. Panoskaltsis V.P., Polymenakos L.C., Soldatos D., On large deformation generalized plasticity, J. Mech. Matls Struct., 3, 441–457, 2008.
- 33. Simo J.C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and multiplicative decomposition Part I: Continuum formulation, Computer Methods Appl. Mech. Engrg., 66, 199–219, 1988.
- 34. Simo J.C., Hughes T.J.R., Computational inelasticity, Springer-Verlag, New York, 1998.
- 35. Holzapfel G.A., Nonlinear solid mechanics. A continuum approach for engineering, John Wiley & Sons, West Sussex, England, 2000.
- 36. Taillard K., Arbab Chirani S., Calloch S., Lexcellent C., Equivalent transformation strain and its relation with martensite volume fraction for isotropic and anisotropic shape memory alloys, Mech. Matls., 40, 151–170, 2008.
- 37. Likhachev A.A., Koval Y.N., On the differential equation describing the hysterisis behavior of shape memory alloys, Scrpt. Metal. Mater., 27, 223–227, 1992.
- 38. Needleman A., Finite elements for finite strain plasticity problems. Plasticity of Metals at Finite Strains: Theory, Computations and Experiment, E.H. Lee, R.L. Mallet [Eds.], Division of Applied Mechanics, Stanford University, Stanford, California, 387–436, 1982.
- 39. Orgeas L., Favier D., Stress induced martensitic transformation of a Ni-Ti alloy in isothermal shear, tension, compression, Acta Mater., 46, 5579–5591, 1998.
- 40. Vacher P., Lexcellent C., Study of pseudoelastic behavior of polycrystalline SMA by resistivity measurements and acoustic emission, [in:] Proc. of ICM 6, Kyoto Japan, M. Jono, T. Inoue [Eds.], 231–236, 1991.
- 41. Lexcellent C., Laydi R.M., About the choice of a plastic-like model for shape memory alloys, Vietnam J. Mech., VAST, 4, 283–291, 2011.
- 42. Perzyna P., On the thermomechanical foundations of viscoplasticity, [in:] Mechanical behavior of materials under dynamic loads, Lindolm U.S. [Ed.], Springer-Verlag, WienNew York, 61–76, 1968.
- 43. Nemat-Nasser S., Choi J.Y., Guo W.-G., Isaacs J.B., Taya M., High Strain-rate, small strain response of a NiTi shape-memory alloy, J. Eng. Mater. Technol., 127, 83–89, 2005.
- 44. Grabe C., Bruhns O.T., On the viscous and strain rate dependent behavior of polycrystalline NiTi, Int. J. of Solids and Struct., 45, 1876–1895, 2008.
- 45. Panoskaltsis V.P., Polymenakos L.C., Soldatos D., A finite strain model of combined viscoplasticity and rate-independent plasticity without a yield surface, Acta Mech., 224, 2107–2125, 2013.
- 46. Lagoudas D.C., Bo Z., Qidwai M.A., A unified thermodynamic constitutive model for SMA and finite element analysis of an active metal matrix composites, Mech. Compos. Mater. Struct., 3, 153–179, 1996.
- 47. Wolff M., Boettcher S., Bohm M. ¨ , Phase transformations in steel in the multiphase case – general modeling and parameter identification, Report 07-02, Zentrum f¨ur Technomathematic, Universit¨at Bremen, 2007.
- 48. Koistinen D.P., Marburger R.E., A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metall., 7, 59–60, 1959.
- 49. Mahnken R., Schneidt A., Antretter T., Macro modeling and homogenization for transformation induced plasticity of a low-alloy steel, Int. J. Plast., 25, 183–204, 2009.
- 50. Voyiadjis G.Z., Abu Al-Rub R.K., Palazotto A., Non-local coupling of viscoplasticity and anisotropic viscodamage for impact problems using the gradient theory, Arch. Mech., 55, 39–89, 2003.
- 51. Voyiadjis G.Z., Deliktas B., A coupled anisotropic damage model for the inelastic response of composite materials, Computer Meth. Appl. Mech. Engrg., 183, 159–199, 2000.
- 52. Meyers A., Xiao H., Bruhns O., Elastic stress ratcheting and corotational stress rates, Technische Mechanic, 23, 92–102, 2003.
- 53. Tran H., Balandraud X., Destrebeck J.-F., Recovery stresses in SMA wires for civil engineering applications: experimental analysis and thermomechanical modeling, Mat.- wiss.u.Werkstofftech., 42, 435–443, 2011.
- 54. Panoskaltsis V.P., Mechanics of shape memory alloy materials – Constitutive modeling and numerical implications, 131–166, Intech Publications, 2013.
- 55. Panoskaltsis V.P., Soldatos D., Triantafyllou S.P., On phase transformations in shape memory alloy materials and large deformation generalized plasticity, Continuum Mech. Thermodyn., 26, 811–831, Published on line: 16 March 2014, DOI 10.1007/s00161- 013-0312-y.
- 56. Panoskaltsis V.P., Soldatos D., Triantafyllou S.P., A new model for shape memory alloy materials under general states of deformation and temperature conditions, [in:] Proceedings of the 7th GRACM International Congress on Computational Mechanics, Boudouvis A.G., Stavroulakis G.E. [Eds.], Athens, Greece, 30 June – 2 July 2011.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5ec699d6-3adf-4892-891f-5c4338e488e2