Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 67, nr 4 | 275--291
Tytuł artykułu

Analytical investigation of strain loading frequency effect on stress-strain-temperature relationship of shape-memory alloy

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a set of simple governing equations of shape-memory alloys was derived by introducing some assumptions and a formula giving temperature variation was obtained by integrating one of the governing equations. The factors affecting the temperature variation depending on loading frequency were analytically investigated from the formula. The obtained temperature variation agreed qualitatively with the measured data. The calculated stress-strain-temperature relationship also agreed qualitatively with the measured data. It was found from the formula that the temperature vibrates sinusoidally and approaches a certain value asymptotically, and that the temperature variation is affected by the ratio of frequency to heat transfer and the ratio of latent heat to generated heat.
Wydawca

Rocznik
Strony
275--291
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • Department of Aerospace Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603, Japan, ikeda@nuae.nagoya-u.ac.jp
Bibliografia
  • 1. K. Otsuka, C.M.Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, 1998.
  • 2. K. Yamauchi, I. Ohkata, K. Tsuchiya, S. Miyazaki (Eds.), Shape Memory and Superelastic Alloys: Applications and Technologies, Woodhead Publishing Limited, Oxford, Cambridge, Philadelphia, New Delhi, 2011.
  • 3. K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloy, Progress in Materials Science, 50, 5, 511–678, 2005.
  • 4. J.A. Shaw, C.B. Churchill, M.A. Iadicola, Tips and tricks for characterizing shape memory alloy wire. Part 1. Differential scanning calorimetry and basic phenomena, Experimental Characterization of Active Materials Series, Experimental Techniques, 32, 5, 55–62, 2008.
  • 5. C.B. Churchill, J.A. Shaw, M.A. Iadicola, Tips and tricks for characterizing shape memory alloy wire. Part 2. Fundamental isothermal responses, Experimental Characterization of Active Materials Series, Experimental Techniques, 33, 1, 51–62, 2009.
  • 6. C.B. Churchill, J.A. Shaw, M.A. Iadicola, Tips and tricks for characterizing shape memory alloy wire. Part 3. Localization and propagation phenomena, Experimental Characterization of Active Materials Series, Experimental Techniques, 33, 5, 70–78, 2009.
  • 7. C.B. Churchill, J.A. Shaw, M.A. Iadicola, Tips and tricks for characterizing shape memory alloy wire. Part 4. Thermo-mechanical coupling, Experimental Characterization of Active Materials Series, Experimental Techniques, 34, 2, 63–80, 2010.
  • 8. B. Reedlunn, S. Daly, L. Hector, Jr., P. Zavattieri, J. Shaw, Tips and tricks for characterizing shape memory alloy wire. Part 5. Full-field strain measurement by Digital image correlation, Experimental Characterization of Active Materials Series, Experimental Techniques, 37, 3, 62–78, 2013.
  • 9. C. Rodriguez, L.C. Brown, The mechanical properties of SME alloys, [in:] Shape Memory Effects in Alloys: Proceedings of the International Symposium on Shape Memory Effects and Applications, J. Perkins (Ed.), Springer Science+Business Media, LLC, 29–58, 1975, New York.
  • 10. J. Van Humbeeck, L. Delaey, The influence of strain-rate, amplitude and temperature on the hysteresis of a pseudoelastic Cu-Zn-Al single crystal. Journal de Physique Colloques, 42, C5, C5-1007-C5-1011, 1981.
  • 11. P.H. Leo, T.W. Sield, O.P. Bruno, Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires, Acta Metallurgica, 41, 8, 2477–2485, 1993.
  • 12. P.H. Lin, H. Tobushi, K. Tanaka, T. Hattori, A. Ikai, Influence of strain rate on deformation properties of TiNi shape memory alloy, JSME International Journal, Series A, 39, 1, 117–123, 1996.
  • 13. Y. Liu, J. Van Humbeeck, On the damping behaviour of NiTi shape memory alloy, Journal de Physique IV, 7, C5, C5-519-C5-524, 1997.
  • 14. F. Gandhi, D. Wolons, Characterization of the pseudoelastic damping behavior of shape memory alloy wires using complex modulus, Smart Materials and Structures, 8, 1, 49–56, 1999.
  • 15. H. Naito, Y. Matsuzaki, T. Ikeda, T. Sasaki, Experimental and analytical studiem on stress-strain-temperature relationship of NiTi shape memory alloy subjected to cycling loadings, Transactions of the JSME (A), 69, 679, 515–522, 2003 (in Japanese).
  • 16. Y.J. He, Q.P. Sun, Frequency-dependent temperature evolution in NiTi shape memory alloy under cyclic loading, Smart Materials and Structures, 19, 11, 115014 (9 pp), 2010. 290
  • 17. H. Yin, Y. He, Q. Sun, Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy, Journal of the Mechanics and Physics of Solids, 67, 100–128, 2014.
  • 18. L.G. Machado, D.C. Lagoudas, Thermomechanical constitutive modeling of SMAs, Shape Memory Alloys – Modeling and Engineering Applications, D.C. Lagoudas (Ed.), Springer Science+Business Media, LLC, 121–187, 2008, New York.
  • 19. S. Barbarino, E.I. Saavedra Flores, R.M. Ajaj, I. Dayyani, M.I. Friswell, A review on shape memory alloys with applications to morphing aircraft, Smart Materials and Structures, 23, 6, 063001 (19 pp), 2014.
  • 20. F. Falk, One-dimensional model of shape memory alloys, Archives of Mechanics, 35, 1, 63–84, 1983.
  • 21. I. Müller, On the size of the hysteresis in pseudoelasticity, Continuum Mechanics and Thermodynamics, 1, 2, 125–142, 1989.
  • 22. S. Seelecke, Equilibrium thermodynamics of pseudoelasticity and quasiplasticity, Continuum Mechanics and Thermodynamics, 8, 5, 309–322, 1996.
  • 23. A. Bertram, Thermo-mechanical constitutive equations for the description of shape memory effects in alloys, Nuclear Engineering and Design, 74, 2, 173–182, 1982.
  • 24. K. Tanaka, A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior, Res Mechanica, 18, 3, 251–263, 1986.
  • 25. C. Liang, C.A. Rogers, One-dimensional thermomechanical constitutive relations for shape memory materials, Journal of Intelligent Material Systems and Structures, 1, 2, 207–234, 1990.
  • 26. L.C. Brinson, One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable, Journal of Intelligent Material Systems and Structures, 4, 2, 229–242, 1993.
  • 27. Q.P. Sun, K.C. Hwang, Micromechanics modelling for the constitutive behavior of polycrystaline shape memory alloys – I. derivation of general relations, Journal of the Mechanical Physics of Solids, 41, 1, 1–17, 1993.
  • 28. J.G. Boyd, D.C. Lagoudas, A thermodynamical constitutive model for shape memory materials. part I. the monolithic shape memory alloy, International Journal of Plasticity, 12, 6, 805–842, 1996.
  • 29. B. Raniecki, C.H. Lexcellent, K. Tanaka, Thermodynamic models of pseudoelastic behavior of shape memory alloys, Archives of Mechanics, 44, 3, 261–284, 1992.
  • 30. Y. Ivshin, T.J. Pence, A thermomechanical model for a one variant shape memory material, Journal of Intelligent Material Systems and Structures, 5, 4, 455–473, 1994.
  • 31. S. Leclercq, C. Lexcellent, A general macroscopic description of the thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids, 44, 6, 953–980, 1996.
  • 32. T. Kamita, Y. Matsuzaki, One-dimensional pseudoelastic theory of shape memory alloys, Smart Materials and Structures, 7, 4, 489–495, 1998.
  • 33. Y. Matsuzaki, H. Naito, T. Ikeda, K. Funami, Thermo-mechanical behavior associated with pseudoelastic transformation of shape memory alloys, Smart Materials and Structures, 10, 5, 884–892, 2001.
  • 34. F. Auricchio, E. Sacco, Thermo-mechanical modelling of a supereleatic shape-memory wire under cyclic stretching-bending loadings, International Journal of Solids and Structures, 38, 34-35, 6123–6145, 2001.
  • 35. E. Patoor, A. Eberhardt, M. Berveiller, Micromechanical modelling of the superelastic behavior, Journal de Physique IV, 5, C2, C-2-501-C2-506, 1995.
  • 36. K. Gall, H. Sehitoglu, The role of texture in tension-compression asymmetry in polycrystalline NiTi, International Journal of Plasticity, 15, 1, 69–92, 1999.
  • 37. F.A. Nae, Y. Matsuzaki, T. Ikeda, Micromechanical modeling of polycrystalline shape memory alloys including thermo-mechanical coupling, Smart Materials and Structures, 12, 1, 6–17, 2003.
  • 38. E.J. Graesser, F.A. Cozzarelli, Shape-memory alloys as new materials for aseismic isolation, Journal of Engineering Mechanics, 117, 11, 2590–2608, 1991.
  • 39. J. Ortín, Preisach modeling of hysteresis for a pseudoelastic Cu-Zn-Al single crystal, Journal of Applied Physics, 71, 3, 1454–1461, 1992.
  • 40. T. Ikeda, F.A. Nae, H. Naito, Y. Matsuzaki, Constitutive model of shape memory alloys for unidirectional loading considering inner hysteresis loops, Smart Materials and Structures, 13, 4, 916–925, 2004.
  • 41. T. Ikeda, Modeling of ferroelastic behavior of shape memory alloys, [in:] Proceedings of SPIE, 5757, 344–352, 2005.
  • 42. T. Ikeda, Constitutive model of shape memory alloys for asymmetric quasiplastic behavior, Journal of Intelligent Material Systems and Structures, 19, 5, 533–540, 2008.
  • 43. T. Ikeda, Application of one-dimensional phase transformation model to tensile-torsional pseudoelastic behavior of shape memory alloy tubes, [in:] Proceedings of SPIE, 6166, 61660Z (8 pp), 2006.
  • 44. T. Ikeda, H. Hattori, Y. Matsuzaki, Numerical analysis of damping enhancement of a beam with shape memory alloy foils bonded,[in:] Proceedings of ICAS 2004, ICAS 2004-5.2.1 (8 pp), 2004.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5e8de661-1e7f-4b41-bbc0-a741f8b93524
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.