Warianty tytułu
Języki publikacji
Abstrakty
Process baths used for electropolishing and pickling of stainless steel have become increasingly contaminated with heavy metal ions over time. There is still lack of research on the neutralization of this type of technological wastewater with high concentrations of metal ions and containing complexing compounds, which significantly hinders their effective treatment. The aim of this paper is to study how the selected methods of heavy metals removal will affect the quality of the treated, industrial post-galvanic sewage from pickling and electropolishing of chromium-nickel steel on a laboratory and technical scale. The research used sodium sulphide or a decomplexing agent based on organic sulphur to neutralize wastewater containing triethanolamine or glycerol. Treatment of electropolishing wastewater poses a challenge. Nevertheless, wastewater with glycerol is easier to neutralize than those containing triethanolamine. In the industrial scale the use of a decomplexing agent is necessary to achieve the required nickel values in the wastewater after treatment below 1 ppm. Even in the case of high concentrations of nickel ions in raw wastewater, the neutralization process of the wastewater originating only from pickling alone was effective. The search for effective methods of neutralization of mixed wastewater is especially important in industrial conditions, where it is not always possible to completely separate these two types of sewage. The paper also presents the results of the composition of post-neutralization sludge, which may be useful in planning further management and disposal of this type of waste.
Czasopismo
Rocznik
Tom
Strony
18--29
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Poland, pawel.lochynski@upwr.edu.pl
autor
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Poland
autor
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Poland
autor
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Poland
Bibliografia
- 1. Agrawal, A., Kumar, V. & Pandey, B.D. (2006). Remediation options for the treatment of electroplating and leather tanning effluent containing chromium - A review, Mineral Processing and Extractive Metallurgy Review, 27, 2, pp. 99-130. DOI: 10.1080/08827500600563319
- 2. Ain, Z.N., Azwan, R.M.T., Imam, M.H., Wahidah, P.S. & Rohana, M.Y.S. (2019). Removal of Nickel, Zinc and Copper from Plating Process Industrial Raw Effluent Via Hydroxide Precipitation Versus Sulphide Precipitation, IOP Conference Series: Materials Science and Engineering, 551, 1. DOI: 10.1088/1757-899X/551/1/012122
- 3. Alyüz, B. & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins, Journal of Hazardous Materials, 167, 1-3, pp. 482-488. DOI: 10.1016/j.jhazmat.2009.01.006
- 4. Andrus, M.E. (2000). A review of metal precipitation chemicals for metal-finishing applications, Metal Finishing, 98, 11, pp. 20-23. DOI: 10.1016/S0026-0576(00)83532-1
- 5. Bhattacharya, A.K., Mandal, S.N. & Das, S.K. (2006). Adsorption of Zn(II) from aqueous solution by using different adsorbents, Chemical Engineering Journal, 123, 1-2, pp. 43-51. DOI: 10.1016/j.cej.2006.06.012
- 6. Bodzek, M. (2013). Inorganic micropollutants removal by means of membrane processes - State of the art, Ecological Chemistry and Engineering S, 20, 4, pp. 633-658. DOI: 10.2478/eces-2013-0044
- 7. Bodzek, M. & Konieczny, K. (2011). Membrane techniques in the removal of inorganic anionic micropollutants from water environment state of the art, Archives of Environmental Protection, 37, 2, pp. 15-19.
- 8. Brbooti, M.M., Abid, B. & Al-shuwaiki, N.M. (2011). Removal of Heavy Metals Using Chemicals Precipitation, Enginering and Technology Journal, 29, August 2017,
- 9. Bugajski, P.M., Nowobilska-Majewska, E. & Kurek, K. (2017). The variability of pollution load of organic, biogenic and chromium ions in wastewater inflow to the treatment plant in Nowy Targ, Journal of Water and Land Development, 35, 1, pp. 11-17. DOI: 10.1515/jwld-2017-0063
- 10. Chaudhari, L. B. & Murthy, Z. V. P. (2010). Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model, Journal of Hazardous Materials, 180, 1-3, pp. 309-315. DOI: 10.1016/j.jhazmat.2010.04.032
- 11. Clever, M., Jordt, F., Knauf, R., Räbiger, N., Ruedebusch, M. & Hilker-Scheibel, R. (2000). Process water production from river water by ultrafiltration and reverse osmosis, Desalination, 131, 1-3, pp. 325-336. DOI: 10.1016/S0011-9164(00)90031-6
- 12. Cooper, C., Jiang, J. Q. & Ouki, S. (2002). Preliminary evaluation of polymeric Fe- and Al-modified clays as adsorbents for heavy metal removal in water treatment, Journal of Chemical Technology and Biotechnology, 77, 5, pp. 546-551. DOI: 10.1002/jctb.614
- 13. Dahlgren, L. (2010). Treatment of Spent Pickling Acid from Stainless Steel Production, Master of Science Thesis, ???
- 14. De Pablo, L., Chávez, M. L. & Abatal, M. (2011). Adsorption of heavy metals in acid to alkaline environments by montmorillonite and Ca-montmorillonite, Chemical Engineering Journal, 171, 3, pp. 1276-1286. DOI: 10.1016/j.cej.2011.05.055
- 15. Deeloed, W., Wannapaiboon, S., Pansiri, P., Kumpeerakij, P., Phomphrai, K., Laobuthee, A., et al. (2020). Crystal Structure and Hirshfeld Surface Analysis of Bis(Triethanolamine)Nickel(II) Dinitrate Complex and a Revelation of Its Characteristics via Spectroscopic, Electrochemical and DFT Studies Towards a Promising Precursor for Metal Oxides Synthesis, Crystals, 10, 474.
- 16. Fu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters : A review, Journal of Environmental Management, 92, 3, pp. 407-418. DOI: 10.1016/j.jenvman.2010.11.011
- 17. Fu, F., Zeng, H., Cai, Q., Qiu, R., Yu, J. & Xiong, Y. (2007). Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant, Chemosphere, 69, 11, pp. 1783-1789. DOI: 10.1016/j.chemosphere.2007.05.063
- 18. Ijagbemi, C.O., Baek, M.H. & Kim, D.S. (2009). Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions, Journal of Hazardous Materials, 166, 1, pp. 538-546. DOI: 10.1016/j.jhazmat.2008.11.085
- 19. Juang, R.S., Kao, H.C. & Chen, W. (2006). Column removal of Ni(II) from synthetic electroplating waste water using a strong-acid resin, Separation and Purification Technology, 49, 1, pp. 36-42. DOI: 10.1016/j.seppur.2005.08.003
- 20. Juang, R.S. & Shiau, R.C. (2000). Metal removal from aqueous solutions using chitosan-enhanced membrane filtration, Journal of Membrane Science, 165, 2, pp. 159-167. DOI: 10.1016/S0376-7388(99)00235-5
- 21. Keane, M.A. (1998). The removal of copper and nickel from aqueous solution using Y zeolite ion exchangers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138, 1, pp. 11-20. DOI: 10.1016/S0927-7757(97)00078-2
- 22. Khan, S.A., Riaz-ur-Rehman, & Khan, M.A. (1995). Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite, Waste Management, 15, 4, pp. 271-282. DOI: 10.1016/0956-053X(95)00025-U
- 23. Kondratenko, Y., Fundamensky, V., Ignatyev, I., Zolotarev, A., Kochina, T. & Ugolkov, V. (2017). Synthesis and crystal structure of two zinc-containing complexes of triethanolamine, Polyhedron, 130, pp. 176-183. DOI: 10.1016/j.poly.2017.04.022
- 24. Kondratenko, Y., Zolotarev, A.A., Ignatyev, I., Ugolkov, V. & Kochina, T. (2020). Synthesis, crystal structure and properties of copper(II) complexes with triethanolamine and carboxylic acids (succinic, salicylic, cinnamic), Transition Metal Chemistry, 45, 1, pp. 71-81. DOI: 10.1007/s11243-019-00359-7
- 25. Kowal, A.L. & Świderska-Bróż, M. (1981). Removal of heavy metals in water rejuvenation, Ochrona Środowiska. http://www.os.not.pl/docs/czasopismo/1981/Kowal_4_1981.pdf (in Polish)
- 26. Kurama, H. (2009). Treatment and recovery of nickel rich precipitate from plating plant waste, Journal of Environmental Engineering and Landscape Management, 17, 4, pp. 212-218. DOI: 10.3846/1648-6897.2009.17.212-218
- 27. Kurniawan, T.A., Chan, G.Y.S., Lo, W.H. & Babel, S. (2006). Physico-chemical treatment techniques for wastewater laden with heavy metals, Chemical Engineering Journal, 118, 1-2, pp. 83-98. DOI: 10.1016/j.cej.2006.01.015
- 28. Li, C., Xie, F., Ma, Y., Cai, T., Li, H., Huang, Z. & Yuan, G. (2010). Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching, Journal of Hazardous Materials, 178, 1-3, pp. 823-833. DOI: 10.1016/j.jhazmat.2010.02.013
- 29. Lin, S.H. & Kiang, C.D. (2003). Chromic acid recovery from waste acid solution by an ion exchange process: Equilibrium and column ion exchange modeling, Chemical Engineering Journal, 92, 1-3, pp. 193-199. DOI: 10.1016/S1385-8947(02)00140-7
- 30. Liu, H.L., Chen, B.Y., Lan, Y.W. & Cheng, Y.C. (2004). Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans, Chemical Engineering Journal, 97, 2-3, pp. 195-201. DOI: 10.1016/S1385-8947(03)00210-9
- 31. Lochynski, P., Kowalski, M., Szczygiel, B. & Kuczewski, K. (2016). Improvement of the stainless steel electropolishing process by organic additives, Polish Journal of Chemical Technology, 18, 4, pp. 76-81. DOI: 10.1515/pjct-2016-0074
- 32. Lugo-Lugo, V., Barrera-Díaz, C., Bilyeu, B., Balderas-Hernández, P., Ureña-Nuñez, F. & Sánchez-Mendieta, V. (2010). Cr(VI) reduction in wastewater using a bimetallic galvanic reactor, Journal of Hazardous Materials, 176, 1-3, pp. 418-425. DOI: 10.1016/j.jhazmat.2009.11.046
- 33. Łyczkowska-Widłak, E., Lochyński, P. & Nawrat, G. (2020). Electrochemical polishing of austenitic stainless steels, Materials, 13, 11, pp. 1-25. DOI: 10.3390/ma13112557
- 34. Malaviya, P. & Singh, A. (2011). Physicochemical technologies for remediation of chromium-containing waters and wastewaters, Critical Reviews in Environmental Science and Technology, 41, 12, pp. 1111-1172. DOI: 10.1080/10643380903392817
- 35. Panayotova, M. & Velikov, B. (2002). Kinetics of heavy metal ions removal by use of natural zeolite, Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 37, 2, pp. 139-147. DOI: 10.1081/ESE-120002578
- 36. Papadopoulos, A., Fatta, D., Parperis, K., Mentzis, A., Haralambous, K. J. & Loizidou, M. (2004). Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods, Separation and Purification Technology, 39, 3, pp. 181-188. DOI: 10.1016/j.seppur.2003.10.010
- 37. Petrinic, I., Korenak, J., Povodnik, D. & Hélix-Nielsen, C. (2015). A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry, Journal of Cleaner Production, 101, pp. 292-300. DOI: 10.1016/j.jclepro.2015.04.022
- 38. Priya, P.G., Basha, C.A., Ramamurthi, V. & Begum, S.N. (2009). Recovery and reuse of Ni(II) from rinsewater of electroplating industries, Journal of Hazardous Materials, 163, 2-3, pp. 899-909. DOI: 10.1016/j.jhazmat.2008.07.072
- 39. Rodríguez-Iznaga, I., Gómez, A., Rodríguez-Fuentes, G., Benítez-Aguilar, A. & Serrano-Ballan, J. (2002). Natural clinoptilolite as an exchanger of Ni2+ and NH4+ ions under hydrothermal conditions and high ammonia concentration, Microporous and Mesoporous Materials, 53, 1-3, pp. 71-80. DOI: 10.1016/S1387-1811(02)00325-6
- 40. Rubel, E., Tomassi, P. & Ziółkowski, J. (2009). Best Available Techniques (BAT) - Wytyczne dla powierzchniowej obróbki metali i tworzyw sztucznych. pp. 91. (in Polish)
- 41. Szymański, K., Janowska, B., Sidełko, R. & Maciołek, P. (2018). Impact of environmental conditions on transformation of mineral pollutants present in landfill leachates, Przemysl Chemiczny, 97, 9, pp. 1517-1519. DOI: 10.15199/62.2018.9.23
- 42. Taha, A.A., Shreadah, M. A., Heiba, H.F. & Ahmed, A.M. (2017). Validity of Egyptian Na-montmorillonite for adsorption of Pb2+, Cd2+ and Ni2+ under acidic conditions: characterization, isotherm, kinetics, thermodynamics and application study, Asia-Pacific Journal of Chemical Engineering, 12, 2, pp. 292-306. DOI: 10.1002/apj.2072
- 43. Thomas, M., Białecka, B. & Zdebik, D. (2018). Removal of copper, nickel and tin from model and real industrial wastewater using sodium trithiocarbonate. The negative impact of complexing compounds, Archives of Environmental Protection, 44, 1, pp. 33-47. DOI: 10.24425/118179
- 44. Thomas, M., Kozik, V., Bąk, A., Barbusiński, K., Jazowiecka-Rakus, J. & Jampilek, J. (2021). Removal of Heavy Metal Ions from Wastewaters: An Application of Sodium Trithiocarbonate and Wastewater Toxicity Assessment, Materials, 14, 3, pp. 655. DOI: 10.3390/ma14030655
- 45. Wang, Z., Li, J., Song, W., Zhang, X. & Song, J. (2019). Decomplexation of electroplating wastewater by ozone-based advanced oxidation process, Water Science and Technology, 79, 3, pp. 589-596. DOI: 10.2166/wcc.2018.167
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5e55d922-bec1-4f52-91b6-d477a1238f95