Warianty tytułu
Języki publikacji
Abstrakty
Fabrication of defect-matching scaffolds is the most critical step in bone tissue engineering. Three-dimensional (3D) printing is a promising technique for custom design scaffold fabrication due to the high controllability and design independency. The objective of this study is to investigate the effect of zinc oxide (ZnO) doping on mechanical and biological characteristics of 3D printed (3DP) calcium sulfate hemihydrate (CSHH) scaffolds. Crystalline phases, wettability, compressive strength and Young's modulus, human bone marrow derived mesenchymal stem cells (hMSCs) attachment, proliferation and morphology were investigated. XRD results showed that CSHH powder transformed into gypsum after the printing process due to the water content of binder. Contact angle measurements indicated that ZnO doped CSHH scaffolds have hydrophilic character, which stimulates cell attachment. The mechanical and cell culture studies demonstrated that increasing the ZnO doping concentration both mechanical strength and cell proliferation on CSHH scaffolds were enhanced.
Czasopismo
Rocznik
Tom
Strony
733--741
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
autor
- Biomechanics Division, Department of Biomedical Engineering, İzmir Katip Celebi University, İzmir, Turkey
autor
- Biomechanics Division, Department of Biomedical Engineering, İzmir Katip Celebi University, İzmir, Turkey
autor
- Division of Tissue Engineering, Faculty of Engineering and Architecture, Rm 148, İzmir Katip Celebi University, İzmir 35620, Turkey, ozan.karaman@ikc.edu.tr
autor
- Division of Biomechanics, Faculty of Engineering and Architecture, İzmir Katip Celebi University, İzmir 35620, Turkey, hakan.oflaz@ikc.edu.tr
Bibliografia
- [1] Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 2012;30:546–54.
- [2] Rauh J, Milan F, Gunther KP, Stiehler M. Bioreactor systems for bone tissue engineering. Tissue Eng B Rev 2011;17:263–80.
- [3] Brydone AS, Meek D, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H J Eng Med 2010;224:1329–43.
- [4] Lichte P, Pape HC, Pufe T, Kobbe P, Fischer H. Scaffolds for bone healing: concepts, materials and evidence. Injury 2011;42:569–73.
- [5] Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 2014;35:4026–34.
- [6] Subia B, Kundu J, Kundu SC. Biomaterial scaffold fabrication techniques for potential tissue engineering applications. In: Eberli D, editor. Tissue Engineering. 2010.
- [7] Chiu LLY, Chu Z, Radisic M. Tissue engineering. In: Andrews DL, Scholes GD, Wiederrecht GP, editors. Comprehensive nanoscience and technology. Elsevier; 2011.
- [8] Chung HJ, Park TG. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev 2007;59:249–62.
- [9] Brunello G, Sivolella S, Meneghello R, Ferroni L, Gardin C, Piattelli A, et al. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv 2016;34:740–53.
- [10] Asadi-Eydivand M, Solati-Hashjin M, Shafiei SS, Mohammadi S, Hafezi M, Abu Osman NA. Structure, properties, and in vitro behavior of heat-treated calcium sulfate scaffolds fabricated by 3D printing. PLoS ONE 2016;11:e0151216.
- [11] Utela B, Storti D, Anderson R, Ganter M. A review of process development steps for new material systems in three dimentional printing (3DP). J Manuf Process 2008;10.
- [12] Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng 2016.
- [13] Butscher A, Bohner M, Hofmann S, Gauckler L, Muller R. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 2011;7:907–20.
- [14] Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today 2013;16:496–504.
- [15] Kalsoom U, Nesterenko PN, Paull B. Recent developments in 3D printable composite materials. RSC Adv 2016;6:60355–71.
- [16] Paul W, Sharma CP. Effect of calcium, zinc and magnesium on the attachment and spreading of osteoblast like cells onto ceramic matrices. J Mater Sci Mater Med 2007;18:699–703.
- [17] Orsini M, Orsini G, Benlloch D, Aranda JJ, Lazaro P, Sanz M, et al. Comparison of calcium sulfate and autogenous bone graft to bioabsorbable membranes plus autogenous bone graft in the treatment of intrabony periodontal defects: a split-mouth study. J Periodontol 2001;72:296–302.
- [18] Asadi-Eydivand M, Solati-Hashjin M, Farzad A, Abu Osman NA. Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes. Robot Comput-Integr Manuf 2016;37:57–67.
- [19] Wu HD, Lee SY, Poma M, Wu JY, Wang DC, Yang JC. A novel resorbable a-calcium sulfate hemihydrate/amorphous calcium phosphate bone substitute for dental implantation surgery. Mater Sci Eng C 2012;32.
- [20] Thomas MV, Puleo DA, Al-Sabbagh M. Calcium sulfate: a review. J Long Term Eff Med Implants 2005;15:599–607.
- [21] Pietrzak WS, Ronk R. Calcium sulfate bone void filler: a review and a look ahead. J Craniofac Surg 2000;11:327–33. discussion 34.
- [22] Sidqui M, Collin P, Vitte C, Forest N. Osteoblast adherence and resorption activity of isolated osteoclasts on calcium sulphate hemihydrate. Biomaterials 1995;16:1327–32.
- [23] Suwanprateeb J, Sanngam R, Suvannapruk W, Panyathanmaporn T. Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. J Mater Sci Mater Med 2009;20:1281–9.
- [24] Khalyfa A, Vogt S, Weisser J, Grimm G, Rechtenbach A, Meyer W, et al. Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Mater Sci Mater Med 2007;18:909–16.
- [25] Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater 2012;28:113–22.
- [26] Alhava EM, Olkkonen H, Puittinen J, Nokso-Koivisto VM. Zinc content of human cancellous bone. Acta Orthop Scand 1977;48:1–4.
- [27] MacDonald RS. The role of zinc in growth and cell proliferation. J Nutr 2000;130:1500S–8.
- [28] Ito A, Kawamura H, Otsuka M, Ikeuchi M, Ohgushi H, Ishikawa K, et al. Zinc-releasing calcium phosphate for stimulating bone formation. Mater Sci Eng C 2002;22.
- [29] Kawamura H, Ito A, Miyakawa S, Layrolle P, Ojima K, Ichinose N, et al. Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J Biomed Mater Res 2000;50:184–90.
- [30] Hesaraki S, Nemati R, Nazarian H. Physico-chemical and in vitro biological study of zinc-doped calcium sulfate bone substitute. J Biomed Mater Res B Appl Biomater 2009;91:37–45.
- [31] Teoreanu I, Preda M, Melinescu A. Synthesis and characterization of hydroxyapatite by microwave heating using CaSO4 _2H2O and Ca(OH)2 as calcium source. J Mater Sci Mater Med 2008;19:517–23.
- [32] Iribarne AP, Iribarne JV, Anthony EJ. Reactivity of calcium sulfate from FBC systems. Fuel 1997;76.
- [33] Marsh DW, Ulrichson DL. Rate and diffusional study of the reaction of calcium oxide with sulfur dioxide. Chem Eng Sci 1985;40.
- [34] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21:667–81.
- [35] Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y. Thermoresponsive polymeric surfaces – control of attachment and detachment of cultured-cells. Makromol Chem-Rapid 1990;11:571–6.
- [36] Zhang S, Yang K, Cui F, Jiang Y, Xu B, Liu H. A novel injectable magnesium/calcium sulfate hemihydrate composite cement for bone regeneration. Biomed Res Int 2015.
- [37] Feng P, Wei PP, Shuai CJ, Peng SP. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering. PLoS ONE 2014;9.
- [38] Zhou JH, Gao CD, Feng P, Xiao T, Shuai CJ, Peng SP. Calcium sulfate bone scaffolds with controllable porous structure by selective laser sintering. J Porous Mater 2015;22:1171–8.
- [39] Albelda SM, Muller WA, Buck CA, Newman PJ. Molecular and cellular properties of pecam-1 (endocam/Cd31) – a novel vascular cell cell-adhesion molecule. J Cell Biol 1991;114:1059–68.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5e2b1c9e-52df-4d78-b24b-a53815b715fc