Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 93, nr 3 | 154--160
Tytuł artykułu

Application of polymer exchange membrane fuel cell stack as the primary energy source in commercial uninterruptible power supply unit

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents construction details of the commercially available uninterruptible power supply system (UPS) in which the PEM fuel cell stack was applied as the primary energy source. Results of components testing as steady state performance of the fuel cell stack used are presented and analyzed in the context of project assumptions. Finally, the results of field tests of the complete UPS unit are presented and analyzed. The designed and constructed uninterruptible power supply with fuel cell module can power any electrical devices up to 300 W for 80 minutes with 33 gram of stored hydrogen.
Wydawca

Rocznik
Strony
154--160
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Energy Sources Research Section, Electrotechnical Institute Division of Electrotechnology and Materials Science, Poland & Hydrogen South Africa (HySA) Systems and Validation Centre, University of the Western Cape Robert Sobukwe Road, Cape Town 7535, South Africa, pbujlo@gmail.com
autor
  • Energy Sources Research Section, Electrotechnical Institute Division of Electrotechnology and Materials Science, Poland, pasciak@iel.wroc.pl
  • Energy Sources Research Section, Electrotechnical Institute Division of Electrotechnology and Materials Science, Poland, chmielja@iel.wroc.pl
  • Energy Sources Research Section, Electrotechnical Institute Division of Electrotechnology and Materials Science, Poland, marek.malinowski@iel.wroc.pl
Bibliografia
  • [1] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X. C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied Energy 88 (4) (2011) 981–1007.
  • [2] H.Wenzl, Batteries and fuel cells - lifetime, Encyclopedia of Electrochemical Power Sources (2009) 552–558.
  • [3] K. Sopian, W.Wan Daud, Challenges and future developments in proton exchange membrane fuel cells, Renewable Energy 31 (5) (2006) 719–727.
  • [4] S. J. Bae, S.-J. Kim, J. I. Park, C. W. Park, J.-H. Lee, I. Song, N. Lee, K.-B. Kim, J.-Y. Park, Lifetime prediction of a polymer electrolyte membrane fuel cell via an accelerated startup-shutdown cycle test, International Journal of Hydrogen Energy 37 (2012) 9775–9781.
  • [5] P. Y. Yi, L. F. Peng, X. M. Lai, Z. Q. Lin, J. Ni, Performance improvement of wave-like pemfc stack with compound membrane electrode assembly, Fuel Cells 12 (6) (2012) 1019–1026.
  • [6] K.-S. Choi, B.-G. Kim, K. Park, H.-M. Kim, Current advances in polymer electrolyte fuel cells based on the promotional role of under-rib convection, Fuel Cells 12 (6) (2012) 908–938.
  • [7] J. S. Spendelow, D. C. Papageorgopoulos, Progress in pemfc mea component r&d at the doe fuel cell technologies program, Fuel Cells 11 (6) (2011) 775–786.
  • [8] B. Emonts, L. Blum, T. Grube, W. Lehnert, J. Mergel, M. Müller, R. Peters, Fuel Cell Science and Engineering: Materials, Processes, Systems and Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2012, Ch. Technical Advancement of Fuel-Cell Research and Development, pp. 1–42.
  • [9] A. J. L. Verhage, J. F. Coolegem, M. J. J. Mulder, M. H. Yildirim, F. A. de Bruijn, 30,000 h operation of a 70 kw stationary pem fuel cell system using hydrogen from a chlorine factory, International Journal of Hydrogen Energy 38 (2013) 4714–4724.
  • [10] P. Corbo, F. Migliardini, O. Veneri, Experimental analysis and management issues of a hydrogen fuel cell system for stationary and mobile application, Energy Conversion and Management 48 (8) (2007) 2365–2374.
  • [11] S. Brennan, A. Bengaouer, M. Carcassi, G. Cerchiara, G. Evans, A. Friedrich, O. Gentilhomme, W. Houf, A. Kotchourko, N. Kotchourko, S. Kudriakov, D. Makarov, V. Molkov, E. Papanikolaou, C. Pitre, M. Royle, R. Schefer, G. Stern, A. G. Venetsanos, A. Veser, et al., Hydrogen and fuel cell stationary applications: Key findings of modelling and experimental work in the hyper project, International Journal of Hydrogen Energy 36 (3) (2011) 2711–2720.
  • [12] K. Cowey, K. J. Green, G. O. Mepsted, R. Reeve, Portable and military fuel cells, Current Opinion in Solid State and Materials Science 8 (5) (2004) 367–371.
  • [13] C. A. Cottrell, S. E. Grasman, M. Thomas, K. B. Martin, J. W. Sheffield, Strategies for stationary and portable fuel cell markets, International Journal of Hydrogen Energy 36 (13) (2011) 7969–7975.
  • [14] P. Beckhaus, M. Dokupil, A. Heinzel, S. Souzani, C. Spitta, On-board fuel cell power supply for sailing yachts, Journal of Power Sources 145 (2) (2005) 639–643.
  • [15] Y. Zhan, Y. Guo, J. Zhu, H.Wang, Intelligent uninterrupt uninterruptible power supply system with back-up fuel cell/battery hybrid power source, Journal of Power Sources 179 (2) (2008) 745–753.
  • [16] F.-C. Wang, P.-C. Kuo, H.-J. Chen, Control design and power management of a stationary pemfc hybrid power system, International Journal of Hydrogen Energy 38 (2013) 5845–5856.
  • [17] P. Bujlo, G. Pasciak, J. Chmielowiec, Test stand for fuel cell investigations, Scientific Papers of the Institute of Electrical Engineering Fundamentals of the Wroclaw University of Technology. Conferences 42 (16) (2005) 31–37.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5e105de2-4eae-47ad-97f3-495650995d11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.