Czasopismo
2016
|
Vol. 36, Fasc. 2
|
187--200
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the problem of estimating the mean matrix Θ of a matrix-variate normal distribution with the covariance matrix V⊗ Im is considered under the loss functions, ω tr((δ − X)′ Q(δ − X)) + (1 − ω) tr((δ − Θ)′ Q(δ − Θ)) and k[1−e−tr((δ − Θ)′ Γ−1(δ − Θ))]. We construct a class of empirical Bayes estimators which are better than the maximum likelihood estimator under the first loss function for m > p + 1 and hence show that the maximum likelihood estimator is inadmissible. For the case Q = V = Ip, we find a general class of minimax estimators. Also we give a class of estimators that improve on the maximum likelihood estimator under the second loss function for m > p + 1 and hence show that the maximum likelihood estimator is inadmissible.
Czasopismo
Rocznik
Tom
Strony
187--200
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
- Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran, shokofeh_zinodiny@yahoo.com
autor
- Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran, srezaei@aut.ac.ir
autor
- School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom, mbbsssn2@manchester.ac.uk
Bibliografia
- [1] A. Asgharazadeh and N. S. Farsipour, Estimation of the multivariate normal mean under the extended balanced loss function, Internat. J. Statist. Systems 3 (2008), pp. 131-136.
- [2] C. R. Blyth, On minimax statistical decision procedures and their admissibility, Ann. Math. Statist. 22 (1951), pp. 22-42.
- [3] D. K. Dey, M. Ghosh, and W. E. Strawderman, On estimation with balanced loss functions, Statist. Probab. Lett. 45 (1999), pp. 97-101.
- [4] B. Efron and C. Morris, Empirical Bayes on vector observations: An extension of Stein’s method, Biometrika 59 (1972), pp. 335-347.
- [5] M. Ghosh and G. Shieh, Empirical Bayes minimax estimators of matrix normal means, J. Multivariate Anal. 38 (1991), pp. 306-318.
- [6] R. L. Haff, Further identities for the Wishart distribution with applications in regression, Canad. J. Statist. 9 (1981), pp. 215-244.
- [7] R. L. Haff, Solutions of the Euler-Lagrange equations for certain multivariate normal estimation problems, unpublished (1984).
- [8] E. L. Lehmann and G. Casella, Theory of Point Estimation, second edition, Springer, New York 1998.
- [9] B. P. K. Leung and F. A. Spiring, Some properties of the family of inverted probability loss functions, Quality Technology and Quantitative Management 1 (2004), pp. 125-147.
- [10] K. D. Majeske and T. W. Lauer, The bank loan approval decision from multiple perspectives, Expert Systems with Applications 40 (2013), pp. 1591-1598.
- [11] J. N. Pan, A new loss function-based method for evaluating manufacturing and environmental risks, International Journal of Quality and Reliability Management 24 (2007), pp. 861-887.
- [12] F. A. Spiring, The reflected normal loss function, Canad. J. Statist. 21 (1993), pp. 321-330.
- [13] C. Stein, Estimation of the mean of a multivariate normal distribution, in: Proceedings of the Prague Symposium on Asymptotic Statistics, September 3-6, 1973, J. Hájek (Ed.), Prague 1974, pp. 345-381.
- [14] M. Towhidi and J. Behboodian, Estimation of the multivariate normal mean under the extended reflected normal loss functions, Bull. Iranian Math. Soc. 28 (2002), pp. 57-65.
- [15] H. Tsukuma, Admissibility and minimaxity of Bayes estimators for a normal mean matrix, J. Multivariate Anal. 99 (2008), pp. 2251-2264.
- [16] A. Zellner, Bayesian and non-Bayesian estimation using balanced loss functions, in: Statistical Decision Theory and Related Topics, S. S. Gupta and J. O. Berger (Eds.), Springer, New York 1994, pp. 371-390.
- [17] Z. Zhang, On estimation of matrix of normal mean, J. Multivariate Anal. 18 (1986), pp. 70-82.
- [18] Z. Zhang, Selecting a minimax estimator doing well, at a point, J. Multivariate Anal. 19 (1986), pp. 14-23.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5dcb743c-0e7b-4827-bd41-961375d8a719