Warianty tytułu
Języki publikacji
Abstrakty
Coronary stenosis is mainly responsible for myocardial ischemia as the blood supply to a portion of the heart stops or is severely reduced. The Fractional Flow Reserve is the benchmark for the hemodynamic significance assessment of coronary stenoses. Its value is employed as a gatekeeper/planning tool for revascularization in clinical practice. Non-invasive alternatives have been successfully proposed to guide cardiologists. However, simulation values are not accurate enough in the 0.75-0.85 range, so invasive Fractional Flow Reserve should be used. Several authors argue about where distal pressure should be measured. Therefore, our aim is to use simulation to assess how this value changes and to detect the correct measurement region. First, we have adjusted the simulation method to the segmentations of two patients whose invasive Fractional Flow Reserve is known. We then extended our analysis to four patients and obtained the simulated value at multiple points distal to the stenosis. This is an advantage over invasive measurements, whose locations are restricted. The results are also essential for locating the best region for invasive distal pressure measurements. We propose a hybrid invasive and in-silico procedure that would avoid false results and prevent cardiologists from making erroneous clinical decisions.
Czasopismo
Rocznik
Tom
Strony
69--81
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Badajoz, Spain
- Instituto de Computación Científica Avanzada de la Universidad de Extremadura (ICCAEx), Badajoz, Spain
autor
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Badajoz, Spain
- Instituto de Computación Científica Avanzada de la Universidad de Extremadura (ICCAEx), Badajoz, Spain
- Departamento de Ciencias Biomédicas, Universidad de Extremadura, Badajoz, Spain
- Servicio de Cardiología del Hospital Universitario de Badajoz, Spain
autor
- Departamento de Ciencias Biomédicas, Universidad de Extremadura, Badajoz, Spain
- Servicio de Cardiología del Hospital Universitario de Badajoz, Spain
autor
- Facultad de Enfermería, Universidad de Oviedo, Gijón, Spain, tenaana@uniovi.es
- Instituto Nacional de Silicosis, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
Bibliografia
- [1] Yeri A, Shah RV. Comparison of computational fluid dynamics and machine Learning-Based fractional flow reserve in coronary artery disease. Circulation. Cardiovasc Imaging 2018;11(6):1-3.
- [2] Linton MF, Yancey PG, Davies SS, Jerome WG, Linton EF, Song WL, et al. The role of lipids and lipoproteins in atherosclerosis. Endotext [Internet]; 2019.
- [3] Coenen A, Rossi A, Lubbers MM, Kurata A, Kono AK, Chelu RG, et al. Integrating CT myocardial perfusion and CT-FFR in the work-up of coronary artery disease. J Am Coll Cardiol Img 2017;10(7):760-70.
- [4] Bakhshi H, Meyghani Z, Kishi S, Magalhães TA, Vavere A, Kitslaar PH, et al. Comparative effectiveness of CT-derived atherosclerotic plaque metrics for predicting myocardial ischemia. J Am Coll Cardiol Img 2019;12(7):1367-76.
- [5] Pijls NH, van Nunen LX. FFR post-PCI: what we learned from the FFR-SEARCH study. REC Interv Cardiol 2021;3(2):83-6.
- [6] Ball C, Pontone G, Rabbat M. Fractional flow reserve derived from coronary computed tomography angiography datasets: The next frontier in noninvasive assessment of coronary artery disease. Biomed Res Int 2018;2018:1-8.
- [7] Pijls NHJ, Van Son JAM, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993;87(4):1354-67.
- [8] Agujetas R, González-Fernández MR, Nogales-Asensio JM, Montanero JM. Numerical analysis of the pressure drop across highly eccentric coronary stenoses: application to the calculation of the fractional flow reserve. Biomed Eng Online 2018;17(1):67.
- [9] Pijls NHJ, Fearon WF, Tonino PAL, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-Year follow-up of the FAME (fractional flow reserve versus angiography for multivessel evaluation) study. J Am Coll Cardiol 2010;56(3):177-84.
- [10] De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 2012;367(11):991-1001.
- [11] Morris PD, Gunn JP. Computing fractional flow reserve from invasive coronary angiography getting closer. Circ Cardiovasc Interv 2017;10(8):7-10.
- [12] Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 2010;38(10):3195-209.
- [13] Koo B-K, Erglis A, Doh J-H, Daniels DV, Jegere S, Kim H-S, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noni. J Am Coll Cardiol 2011;58(19):1989-97.
- [14] Nakazato R, Park HB, Berman DS, Gransar H, Koo BK, Erglis A, et al. Non-invasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity results from the DeFACTO study. Circulation. Cardiovasc Imaging 2013;6(6):881-9.
- [15] Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, et al. Diagnostic performance of non-invasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: The NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 2014;63(12):1145-55.
- [16] Morris PD, Silva Soto DA, Feher JFA, Rafiroiu D, Lungu A, Varma S, et al. Fast Virtual Fractional Flow Reserve Based Upon Steady-State Computational Fluid Dynamics Analysis: Results From the VIRTU-Fast Study. JACC: Basic to Translational. Science 2017;2(4):434-46.
- [17] Sankaran S, Kim HJ, Choi G, Taylor CA. Uncertainty quantification in coronary blood flow simulations: Impact of geometry, boundary conditions and blood viscosity. J Biomech 2016;49(12):2540-7.
- [18] Toth GG, Johnson NP, Jeremias A, Pellicano M, Vranckx P, Fearon WF, et al. Standardization of Fractional Flow Reserve Measurements. J Am Coll Cardiol 2016;68(7):742-53.
- [19] Ihdayhid AR, Yong A, Harper R, Rankin J, Wong C, Brown AJ, et al. A Practical Guide for Fractional Flow Reserve Guided Revascularisation. Heart Lung Circ 2018;27(4):406-19.
- [20] Matsumura M, Johnson NP, Fearon WF, Mintz GS, Stone GW, Oldroyd KG, et al. Accuracy of Fractional Flow Reserve Measurements in Clinical Practice: Observations From a Core Laboratory Analysis. J Am Coll Cardiol Intv 2017;10 (14):1392-401.
- [21] Renard BM, Cami E, Jiddou-Patros MR, Said A, Kado H, Trivax J, et al. Optimizing the Technique for Invasive Fractional Flow Reserve to Assess Lesion-Specific Ischemia. Circ Cardiovasc Interv 2019;12(10):1-9.
- [22] Kumbhani DJ, Bhatt DL. (2016) Fractional Flow Reserve in Serial Coronary Artery Stenoses. JAMACardiol 2016;1 (3):359-60.
- [23] ACIST, http://acist.com/international/products/acist-rxirapid-exchange-ffr-system/acist-navvus-rapid-exchange-ffrmicrocatheter/.
- [24] Yi J, Tian F-B, Simmons A, Barber T. A Computational Analysis of the Influence of a Pressure Wire in Evaluating Coronary Stenosis. Fluids 2021;6(4):165.
- [25] Abuouf Y, Ookawara S, Ahmed M. Analysis of the effect of guidewire position on stenosis diagnosis using computational fluid dynamics. Comput Biol Med 2020;121:103777.
- [26] Hounsfield GN. Computerized transverse axial scanning (tomography): Part 1. Description of system. Br J Radiol 1973;46(552):1016-22.
- [27] D Slicer V4.11.0 (2019). https://www.slicer.org.
- [28] Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012;30(9):1323-41.
- [29] Murray CD. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci U S A 1926;12(3):207-14.
- [30] ANSYS Version 18.2. ANSYS Inc; 2017.
- [31] Fernández-Tena A, Marcos AC, Agujetas R, Ferrera C. Simulation of the human airways using virtual topology tools and meshing optimization. Biomech Model Mechanobiol 2018;17(2):465-77.
- [32] Janna WS. Introduction to fluid mechanics. CRC Press; 2015.
- [33] Agujetas R, Ferrera C, Marcos AC, Alejo JP, Montanero JM. Numerical and experimental analysis of the transitional flow across a real stenosis. Biomech Model Mechanobiol 2017;16 (4):1447-58.
- [34] Menter FR, Langtry R, Völker S. Transition modelling for general purpose CFD codes. Flow Turbul Combust 2006;77(1-4):277-303.
- [35] Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. Pearson Education; 2007.
- [36] Cho YI, Kensey KR. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology 1991;28(3-4):241-62.
- [37] Fernández-Tena A. Clinical applications of fluid dynamics models in respiratory disease. Ph.D. thesis. Spain: University of Oviedo; 2014. http://digibuo.uniovi.es/dspace/handle/ 10651/29057.
- [38] Taylor CA, Fonte TA, Min JK. Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve. J Am Coll Cardiol 2013;61(22):2233-41.
- [39] Fernández-Tena A, Marcos AC, Martínez C, Keith Walters D. A new adaptive time step method for unsteady flow simulations in a human lung. Comput Methods Biomech Biomed Eng 2017;20(8):915-7.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5dc8cb4a-0d37-40c2-b016-28d4b06529bc