Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2018 | Vol. 45, no. 1 | 119--129
Tytuł artykułu

Historical building dating: A multidisciplinary study of the Convento de São Francisco (Coimbra, Portugal)

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cross-dating of bricks and mortars from historical building, through thermal (TL) and optically stimulated (OSL) luminescence have achieved good accuracy and precision. However this approach is, in many cases, not exhaustive especially for buildings with different construction phases closely temporally spaced to each other. The uncertainties of experimental data added to the reuse of old bricks and/or the presence of mortars applied on restorations represent the main limits to obtain the complete chronology. In the case of the Convento de S. Francisco (Coimbra, Portugal), the dating results were crossed with the stratigraphic study of the building, mineralogical characterization by XRD and colorimetric data of the mortar samples. Thanks to luminescence ages, mineralogical composition and color specification, two phases of construction were identified: the first from the 17th century and the first half of the 18th century and the second from the second half of the 18th century to the first half of the 19th century. These results were confirmed by mineralogical characterization and colorimetric measurements of mortars that identify two different types of materials in aggregate/binder ratio terms and superficial optical characteristics.
Wydawca

Czasopismo
Rocznik
Strony
119--129
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • PHysics for Dating Diagnostics Dosimetry Research and Applications (PH3DRA) Laboratories, Department of Physics and Astronomy, University of Catania & CHNet INFN Sez Catania, via S. Sofia 64, 95123 Catania, Italy
autor
  • HERCULES Laboratory, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 8, 7000-809 Évora (Portugal) 3 Archaeologist, freelancer, Coimbra (Portugal)
autor
  • Archaeologist, freelancer, Coimbra (Portugal)
autor
  • PHysics for Dating Diagnostics Dosimetry Research and Applications (PH3DRA) Laboratories, Department of Physics and Astronomy, University of Catania & CHNet INFN Sez Catania, via S. Sofia 64, 95123 Catania, Italy
autor
  • Earth Sciences Dep., Faculty of Science and Technology, University of Coimbra, IMAR-CMA, Rua Sílvio Lima, 3030-790 Coimbra (Portugal)
autor
  • iDryas / Dryas Octopetala, R. Aníbal de Lima, 170, 3000-030 Coimbra (Portugal)
autor
  • PHysics for Dating Diagnostics Dosimetry Research and Applications (PH3DRA) Laboratories, Department of Physics and Astronomy, University of Catania & CHNet INFN Sez Catania, via S. Sofia 64, 95123 Catania, Italy
Bibliografia
  • 1. Aitken MJ, 1985. Thermoluminescence dating. Academic Press, London.
  • 2. Almeida LFS, Garcia P, Stella G, Basilio L, Corga M, Ferreira MT and Almeida M, 2011. O Património amanhã: forma, conteúdo e multidisciplinaridade na requalificação do património histórico – o caso do Convento de S. Francisco (Coimbra). (Patrimony tomorrow: form, content and multidisciplinarity in the reclassification of historical heritage - the case of the Convent of S. Francisco (Coimbra)) Conference paper: Simpósio Património em Construção. Contextos para a sua preservação, At LNEC, Lisboa, 303–310.
  • 3. Bailiff IK, 2007. Methodological developments in the luminescence dating of brick from English late-medieval and post-medieval buildings. Archaeometry 49: 827–851.
  • 4. Bailiff IK and Holland N, 2000. Dating bricks of the last two millennia from Newcastle upon Tyne: a preliminary study.Radiation Measurements 32: 615–619.
  • 5. Ballarini M, Wallinga J, Wintle AG and Bos AJJ, 2007. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiation Measurements 42: 360–369.
  • 6. Bøtter-Jensen L, 1997. Luminescence techniques: instrumentation and methods. Radiation Measurements 27: 749–768.
  • 7. Bøtter-Jensen L, Bulur E, Duller GAT and Murray AS, 2000. Advances in luminescence instrument systems. Radiation Measurements 32: 523–528.
  • 8. Choi JH, Murray AS, Jain M, Cheong CS and Chang HW, 2003. Luminescence dating of well-sorted marine terrace sediments on the southeastern coast of Korea. Quaternary Science Reviews22: 407–421.
  • 9. Dias MIM, 1998. Caracterização mineralógica e tecnológica de argilas especiais de Bacias Terciárias Portuguesas. (Mineralogical and technological characterization of special clays of Portuguese Tertiary Basins). Unpublished PhD thesis, University of Lisbon: 333p.
  • 10. Feathers JK, Johnson J and Kembel SR, 2008. Luminescence Dating of Monumental Stone Architecture at Chavín De Huántar, Perú. Journal of Archaeological Method and Theory 15: 266–296.
  • 11. Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz form Jinmium Rock Shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41: 339–364.
  • 12. Gerardi F, Smedile A, Pirrotta C, Barbano MS, De Martini PM, Pinzi S, Gueli AM, Ristuccia GM, Stella G and Troja SO, 2012. Geological record of tsunami inundations in Pantano Morghella (southeastern Sicily) both from near and far-field sources.Natural Hazards and Earth System Sciences 12: 1185–1200.
  • 13. Goedicke C, Slusallek K and Kubelik M, 1981. Thermoluminescence dating in architectural history: Venetian villas. Journal of the Society of Architectural Historians XL 3: 203–217.
  • 14. Goedicke C, 2011. Dating mortar by optically stimulated luminescence: a feasibility study. Geochronometria38: 42–49.
  • 15. Gueli AM, Stella G, Troja SO, Burrafato G, Margani G and Zuccarello AR, 2009. Absolute dating of the Cuba of Santa Domenica (Messina, Italy). Il Nuovo Cimento B124: 885–891.
  • 16. Gueli AM, Stella G, Troja SO, Burrafato G, Fontana D, Ristuccia GM and Zuccarello AR, 2010. Historical buildings: Luminescence dating of fine grains from bricks and mortar. Il Nuovo Cimento B125: 719–729.
  • 17. Guérin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL 29: 5–8.
  • 18. Guibert P, Bailiff IK, Blain S, Gueli AM, Martini M, Sibilia E, Stella G and Troja SO, 2009a. Luminescence dating of architectural ceramics from an early medieval abbey: The St Philbert Intercomparison (Loire Atlantique, France). Radiation Measurements 44: 488–493.
  • 19. Guibert P, Lahaye C and Bechtel F, 2009b. The importance of U-series disequilibrium of sediments in luminescence dating: A case study at the Roc de Marsal Cave (Dordogne, France). Radiation Measurements 44: 223–231.
  • 20. Guibert P, Christophe C, Urbanová P, Blain S and Guérin G, 2017. Modeling incomplete and heterogeneous bleaching of mobile grains partially exposed to the light: towards a new tool for single grain OSL dating of poorly bleached mortars.Radiation Measurements107: 48–57.
  • 21. Kiyak NG and Canel T, 2006. Equivalent dose in quartz from young samples using the SAR protocol and the effect of preheat temperature. Radiation Measurements 41: 917–922.
  • 22. Martini M. and Sibilia E., 2001. Radiation in archaeometry: archaeological dating. Radiation Physics and Chemistry 61: 241–246.
  • 23. Mauz B and Lang A, 2004. Removal of the feldspar-derived luminescence component from polymineral fine silt samples for optical dating applications: evaluation of chemical treatment protocols and quality control procedures. Ancient TL 22: 1–8.
  • 24. Moore DM and Reynolds Jr RC, 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press. 2nd edition: 378p.
  • 25. Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability.Radiation Measurements37: 377–381.
  • 26. Panzeri L, 2013. Mortar and surface dating with optically stimulated luminescence (OSL): innovative techniques for the age determination of buildings. Nuovo Cimento C36(4): 205–216.
  • 27. Pawley SM, Toms P, Armitage SJ and Rose J, 2010. Quartz luminescence dating of Anglian Stage (MIS 12) fluvial sediments: Comparison of SAR age estimates to the terrace chronology of the Middle Thames valley, UK. Quaternary Geochronology 5: 569–582.
  • 28. Prasad S, 2000. HF treatment for the isolation of fine grain quartz for luminescence dating. Ancient TL18: 15–17.
  • 29. Prescott JR and Hutton JT, 1988. Cosmic ray and gamma ray dose dosimetry for TL and ESR. Nuclear Tracks and Radiation Measurements 14: 223–235.
  • 30. Sanjurjo-Sanchez J, Trindade MJ, Blanco-Rotea R, Garcia RB, Mosquera DF, Burbidge C, Prudencio MI and Dias MI, 2010. Chemical and mineralogical characterization of historic mortars from the Santa Eulalia de Bóveda temple, NW Spain.Journal of Archaeological Science 37: 2346–2351.
  • 31. Schultz LG, 1964. Quantitative interpretation of mineralogical composition X-ray and chemical data for the Pierre Shale. U.S. Geological Survey Professional Paper 391-C: 30p.
  • 32. Shen Z, Mauz B, Lang A, Bloemendal J and Dearing J, 2007. Optical dating of Holocene lake sediments: Elimination of the feldspar component in fine silt quartz samples. Quaternary Geochronology 2: 150–154.
  • 33. Stella G, Fontana D, Gueli AM and Troja SO, 2013. Historical mortars dating from OSL signals of fine grain fraction enriched in quartz. Geochronometria 40(3): 153–164.
  • 34. Stella G, Fontana D, Gueli AM and Troja SO, 2014. Different approaches to date bricks from historical buildings.Geochronometria 41(3): 256–264.
  • 35. Thomas PJ, Murray AS and Sandgren P, 2003. Age limit and age underestimation using different OSL signals from lacustrine quartz and polymineral fine grains. Quaternary Science Reviews 22: 1139–1143.
  • 36. Thorez J, 1976. Practical Identification of clay minerals. Ed. G. Lelotte, Dison(Belgique):90p.
  • 37. Vermeesch P, 2009. RadialPlotter: A Java application for fission track, luminescence and other radial plots. Radiation Measurements 44: 409–410
  • 38. Urbanová P, Hourcade D, Ney C and Guibert P, 2015. Sources of uncertainties in OSL dating of archaeological mortars: the case study of the Roman amphitheatre Palais-Gallienin Bordeaux. Radiation Measurements 72: 100–110.
  • 39. Urbanová P, Delaval E, Dufresne P, Lanos P and Guibert P, 2016. Multi-method dating comparison of Grimaldi castle foundations in Antibes, France. ArchéoSciences - Revue ď archeométrié, 40: 17–33.
  • 40. Urbanová P and Guibert P, 2017. Methodological study on single grain OSL dating of mortars: Comparison of five reference archaeological sites. Geochronometria, 44(1): 77–97.
  • 41. Wyszecki G and Stiles WS, 2000. Color Science: Concepts and Methods, Quantitative Data and Formulae. Ed. Wiley-Interscience; 2 edition.
  • 42. Zacharias N, Mauz B and Michael CT, 2002. Luminescence quartz dating of lime mortars. A first research approach.Radiation Protection Dosimetry 101: 379–382.
  • 43. Zhang JF and Zhou LP, 2007. Optimization of the ‘double SAR’ procedure for polymineral fine grains. Radiation Measurements 42: 1475–1482.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5dc5e0bb-6524-4953-a28f-6742a44adbbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.