Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 125, nr 3/4 | 285--312
Tytuł artykułu

Critical Parameter Values and Reconstruction Properties of Discrete Tomography : Application to Experimental Fluid Dynamics

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We analyze representative ill-posed scenarios of tomographic PIV (particle image velocimetry) with a focus on conditions for unique volume reconstruction. Based on sparse random seedings of a region of interest with small particles, the corresponding systems of linear projection equations are probabilistically analyzed in order to determine: (i) the ability of unique reconstruction in terms of the imaging geometry and the critical sparsity parameter, and (ii) sharpness of the transition to non-unique reconstruction with ghost particles when choosing the sparsity parameter improperly. The sparsity parameter directly relates to the seeding density used for PIV in experimental fluids dynamics that is chosen empirically to date. Our results provide a basic mathematical characterization of the PIV volume reconstruction problem that is an essential prerequisite for any algorithm used to actually compute the reconstruction. Moreover, we connect the sparse volume function reconstruction problem from few tomographic projections to major developments in compressed sensing.
Wydawca

Rocznik
Strony
285--312
Opis fizyczny
Bibliogr. 19 poz., fot., rys., wykr.
Twórcy
autor
autor
  • Institute of Aerodynamics and Flow Technology, German Aerospace Center, Bunsenstr. 10, 37073 Göttingen, Germany, andreas.schroeder@dlr.de
Bibliografia
  • [1] Azuma, K.: Weighted Sums of Certain Dependent Random Variables, Tohoku Math. J., 19(3), 1967, 357367.
  • [2] Berinde, R., Indyk, P.: Sparse Recovery Using Sparse Random Matrices, 2008, MIT-CSAIL Technical Report.
  • [3] Candes, E. J., Romberg, J., Tao, T.: Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information, IEEE Trans. Inf. Theor., 52(2), 2006, 489-509.
  • [4] DasGupta, A.: Asymptotic Theory of Statistics and Probability, Springer, 2008.
  • [5] Donoho, D.: Compressed Sensing, IEEE Trans. Inf. Theor.I, 52(4), 2006, 1289-1306.
  • [6] Donoho, D., Tanner, J.: Sparse Nonnegative Solution of Underdetermined Linear Equations by Linear Programming, Proc. National Academy of Sciences, 102(27), 2005, 9446-9451.
  • [7] Donoho, D., Tanner, J.: Counting the Faces of Randomly-Projected Hypercubes and Orthants, with Applications, Discrete Comput. Geom., 43(3), 2010, 522-541.
  • [8] Donoho, D., Tanner, J.: Precise Undersampling Theorems, Proceedings of the IEEE, 98(6), 2010, 913-924, ISSN 0018-9219.
  • [9] Elsinga, G., Scarano, F., Wieneke, B., van Oudheusden, B.: Tomographic Particle Image Velocimetry, Exp. Fluids, 41, 2007, 933-947.
  • [10] G.T. Herman, G., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Applications, Birkhauser, 1999.
  • [11] Khajehnejad, M., Dimakis, A., Xu, W., Hassibi, B.: Sparse Recovery of Positive Signals with Minimal Expansion, IEEE Trans. Sig. Proc., 59, 2011, 196-208.
  • [12] Mangasarian, O., Recht, B.: Probability of Unique Integer Solution to a System of Linear Equations, Eur. J Oper. Res., 214(1), 2011, 27-30.
  • [13] Petra, S., Schnorr, C.: TomoPIV meets Compressed Sensing, Pure Math. Appl., 20(1-2), 2009,49-76.
  • [14] Petra, S., Schnorr, C.: Average Case Recovery Analysis of Tomographic Compressive Sensing, arXiv:1208.5894v2 [math.NA], August 30 2012.
  • [15] Petra, S., Schroder, A., Schnorr, C.: 3D Tomography from Few Projections in Experimental Fluid Mechanics, in: Imaging Measurement Methods for Flow Analysis (W. Nitsche, C. Dobriloff, Eds.), vol. 106 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer, 2009, 63-72.
  • [16] Vlasenko, A., Schnorr, C.: Variational Approaches for Model-Based PIV and Visual Fluid Analysis, in: Imaging Measurement Methods for Flow Analysis (W. Nitsche, C. Dobriloff, Eds.), vol. 106 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer, 2009, 247-256.
  • [17] Wang, M., Xu, W., Tang, A.: A Unique ”Nonnegative” Solution to an Underdetermined System: From Vectors to Matrices, IEEE Trans. Sig. Proc., 59(3), 2011, 1007-1016.
  • [18] Wendel, J.: A Problem in Geometric Probability, Math. Scand., 11, 1962, 109-111.
  • [19] Xu, W., Hassibi, B.: Efficient Compressive Sensing with Deterministic Guarantees Using Expander Graphs, Information Theory Workshop, 2007. ITW ’07. IEEE, 2007.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5da2c010-df64-447b-b3d7-2d39aa347e5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.