Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a simple method of measuring the luminous flux value dedicated to LED light sources. This method uses information about a spatial radiation pattern of the lighting source under test and the results of illuminance measurements at the axis of this source. The method is described and the results of the measurements obtained using this method and the classical method are compared and discussed. Tests have been carried out for LED modules of different geometries. The measurement error of the considered method is analysed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. ee149234
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., fot.
Twórcy
autor
- Department of Marine Electronics, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland, k.gorecki@we.umg.edu.pl
autor
- Faculty of Electrical Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
autor
- Department of Marine Electronics, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
Bibliografia
- [1] Weir, B. Driving the 21st century’s lights. IEEE Spectr. 49, 42-47 (2012). https://doi.org/10.1109/MSPEC.2012.6156864.
- [2] Martin, P. S. et al. High Power White Led Technology for Solid State Lighting. Lumileds http://xgistor-echo.scorchingbay.nz/files/ Electronics/Led-Info/SPIE2001.pdf (2005).
- [3] Schubert, E. F. Light emitting diodes. 2nd edition. (Cambridge University Press, 2008). https://doi.org/10.1017/CBO9780511790546.
- [4] JEDEC Standard JESD51-52: Guidelines for combining CIE 127-2007 total flux measurements with thermal measurements of LEDs with exposed cooling surface. https://www.intertekinform.com/en-GB/standards/jedec-jesd-51-52-2012-1128077_saig_jedec_jedec_ 2616248 (2018).
- [5] JEDEC Standard JESD51-51: Implementation of the electrical test method for the measurement of real thermal resistance and impedance of light-emitting diodes with exposed cooling. https://standards.globalspec.com/std/1518764/JEDEC%20JESD%2051-51 (2012).
- [6] Young, R. Measuring light emission from LEDs. Proc. SPIE 6355, 6355OH (2006). https://doi.org/10.1117/12.692731.
- [7] Leśko, M., Różowicz, A., Wachta, H. & Różowicz, S. Adaptive luminaire with variable luminous intensity distribution. Energies 13, 721 (2020). https://doi.org/10.3390/en13030721.
- [8] Martin, G. et al. Luminaire digital design flow with multi-domain digital twins of LEDs. Energies 12, 2389 (2019). https://doi.org/10.3390/en12122389.
- [9] Górecki, K., Ptak, P. & Bruski, Ł. Spatial Radiation Patterns of Selected Solid State Light Sources. in 28th International Conference “Mixed Design of Integrated Circuits and Systems” 222-227 (IEEE, 2021). https://doi.org/10.23919/MIXDES52406.2021.9497566.
- [10] Górecki, K. & Ptak, P. New dynamic electro-thermo-optical model of power LEDs. Microelectron. Reliab. 91, 121-124 (2018). https://doi.org/10.1016/j.microrel.2018.07.132.
- [11] Baran, K., Różowicz, A., Wachta, H. & Różowicz, S. Modelling of selected lighting parameters of LED panel. Energies 13, 3583 (2020). https://doi.org/10.3390/en13143583.
- [12] Poppe, A., Farkas, G., Szekely, V., Horvath, G. & Rencz, M. Multi-domain Simulation And Measurement of Power LEDs and Power LED Assemblies. in 22nd Annual IEEE Semiconductor Thermal Measurement and Management Symposium 191-198 (IEEE, 2006), https://doi.org/10.1109/STHERM.2006.1625227.
- [13] Salvador, P., Valls, J., Corral, J. L., Almenar, V. & Canet, M. J. Linear response modeling of high luminous flux phosphor-coated white LEDs for VLC. J. Light. Technol. 40, 3761-3767 (2022). https://doi.org/10.1109/JLT.2022.3150907.
- [14] Lee, A. T. L., Chen, H., Tan, S.-Ch. & Hui, S. Y. New dynamic photo-electro-thermal modeling of light-emitting diodes with phosphor coating as light converter-part II: Model parameter determination and practical verification. IEEE J. Emerg. Sel. Topics Power Electron. 8, 780-793 (2020). https://doi.org/10.1109/JESTPE.2018.2889113.
- [15] Leśko, M. & Różowicz, A. Influence of the reflector properties on the photometric characteristics of a luminaire with variable luminous intensity distribution. Prz. Elektrotech. 100, 199-203 (2024). https://doi.org/10.15199/48.2024.01.41.
- [16] Górecki, K., Kowalke, W. & Ptak, P. Influence of quality of mounting process of RF transistors on their thermal parameters and lifetime. Appl. Sci. 12, 6113 (2022). https://doi.org/10.3390/app12126113.
- [17] Castellazzi, A., Gerstenmaier, Y. C., Kraus, R. & Wachutka, G. K. M. Reliability analisys and modeling of power MOSFETs in the 42-V-PowerNet. IEEE Trans. Power Electron. 21, 603-612 (2006). https://doi.org/10.1109/TPEL.2006.872382.
- [18] Chang, M.-H., Das, D., Varde, P. V. & Pecht, M. Light emitting diodes reliability review. Microelectron. Reliab. 52, 762-782 (2012). https://doi.org/10.1016/j.microrel.2011.07.063.
- [19] Hegedus, J., Hantos, G. & Poppe, A. Lifetime modelling issues of power light emitting diodes. Energies 13, 3370 (2020). https://doi.org/10.3390/en13133370.
- [20] Datasheet XLamp MC-E. Cree Inc. https://www.maritex.com.pl/product/attachment/42170/7f487112d77e7eb8a0e73e0de16be2e1 (Accessed: Nov.16th, 2023).
- [21] Datasheet XLamp XR-E. Cree Inc. https://downloads.cree-led.com/ files/ds/x/XLamp-XRE.pdf (Accessed: Nov. 16th, 2023).
- [22] Datasheet XLamp XP-G2. Cree Inc. https://downloads.cree-led. com/files/ds/x/XLamp-XPG2.pdf (Accessed: Nov. 16th, 2023).
- [23] Website Lisun Group. https://www.lisungroup.com (Accessed: Nov. 16th, 2023).
- [24] Measurement, Instrumentation and Sensors. Handbook. 2nd Edition. (eds. Webster, J. G. & Eren, H.) (CRC Press, Boca Raton, 2018). https://doi.org/10.1201/9781315217109.
- [25] International Comnission on Illumination. CIE 70, 1987 Edition - The Measurement of Absolute Luminous Intensity Distributions. https://www.lisungroup.com/wp-content/uploads/2020/02/CIE-70-1987-Standard-Free-Download.pdf (1987).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5d6e55a6-623a-4764-bba4-82c327cb007e