Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This is an extended discussion of the introduction and role played by the so-called co-rotational derivative (also called the Jaumann derivative in Germany and, rightfully, the Zaremba derivative in Poland) and other "objective'' time derivatives of geometrical objects as they appear in continuum physics. This is achieved in a somewhat abstract formalism starting with clearly defined "spatial" and "material" notions, the differentiable-manifold definition of deformation tensors, and the notions of parallel transport and Lie derivative. The notion of "objectivity'' (as common in continuum mechanics since the pioneering work of W. Noll) and Piola transformations follow next. The paper ends with a reminder on local balance equations and objective constitutive equations such as those of the time-rate type. It seems that the author does not know the famous book of J. E. Marsden and T. J. R. Hughes [Mathematical foundations of elasticity, corrected reprint of the 1983 original, Dover, New York, 1994; MR1262126], where most of the given material can be found.
Słowa kluczowe
Rocznik
Tom
Strony
51--80
Opis fizyczny
Bibliogr.19 poz.
Twórcy
autor
- Instytut Matematyki Stosowanej i Mechaniki, Wydział Matematyki, Informatyki i Mechaniki, Uniwersytet Warszawski, Ul. Banacha 2, 02-097 Warszawa
Bibliografia
- [1] Auslander, L., Mac Kenzie, R. E. (1963). Introduction to Differentiable Manifolds, Mac Graw-Hill.
- [2] Arnold, V. (1978). Mathematical Methods of Classical Mechanics, Springer Verlag.
- [3] Fung, C. Y. (1969). Foundations of solid mechanics, Polish Scientific Publishers, Warszawa (in Polish).
- [4] Hanyga, A. (1985). Mathematical Theory of Nonlinear Elasticity, Ellis Horwood Limited & PWN.
- [5] Jaumann, G. (1905). Grundlagen der Bewegungslehre, Leipzig.
- [6] Lichnerovicz, A. (1976). Global Theory of connections and Holonomy Groups, Noordhoff.
- [7] Margulies, G. (1956). Remark on kinematically preferred coordinate systems, Proc. Nat. Acad. Sci. 42, 152-153.
- [8] Mizohata, S. (1969). (Engl, transl. (1973), Russian transl. (1977)). The Theory of Partial Differential Equations, Cambridge University Press, Cambridge.
- [9] Mossakowska, Z., Wesołowski, Z., Zahorski, S. (1968). Invariance in continuum mechanics, in: Geometrical Methods in Physics and Technics, Wydawnictwa Naukowo-Techniczne, Warszawa (in Polish).
- [10] Oldroyd, J. G. (1950). On the formulation of rheological equations of state, Proc. Roy. Soc., A200, 523-541.
- [11] Oldroyd, J. G. (1958). Non-Newtonian effects in steady motion of some idealized elasticoviscous liquids, Proc. Roy. Soc., London, Ser.: A245, 278-297.
- [12] Prager, W. (1961). An elementary discussion of definitions of stress rate, Q. Appl. Math., vol. 18, pp. 403-407.
- [13] Rymarz, Cz. (1993). Mechanics of continuous media, Scientific Publishers, Warszawa (in Polish).
- [14] Sternberg, S. (1964). Lectures on Differential Geometry, Englewood Cliffs, N.J.
- [15] Ślebodziński, W. (1954, 1963). Formes exterieures et leurs applications, vol. I, II.
- [16] Thomas, T. Y. (1961, Russian transl. 1964). Plastic Flow and Fracture in Solids, Academic Press.
- [17] Truesdell, C. A. (1972, Russian transl. 1976). A First Course in Rational Continuum Mechanics, The John Hopkins University, Baltimore, Md.
- [18] Wang, C.-C. and Truesdell, C. A. (1973). Introduction to Rational Elasticity, Noord- hoff, Leyden.
- [19] Zaremba, S. (1903). Sur une forme perfectionné de la theorie de la relaxation, Bull. Int. Acad. Sci. Cracoviae 3, p. 594-614.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5d6ad369-8ffd-45ea-85de-92b3ad83b382