Warianty tytułu
Wykorzystanie mchów Pleurozium schreberi (Brid.) Mitt. w bioindykacji skażenia radionuklidami obszarów przemysłowych Górnego Śląska
Języki publikacji
Abstrakty
Mosses are good bioaccumulators of radionuclides and from the 60 of the last century, they are used as bioindicators of radioactive contamination in the environment. Concentration of impurities in moss represent the accumulation in mosses during the past 2-3 years. As a result, the moss composition analysis provides information on an average contamination within a few vegetation seasons. During our survey the measurements of radionuclide activity concentrations in P. schreberi transplanted from places relatively clean to heavily contaminated areas of Upper Silesia were carried out. An increase in the radionuclides activity concentrations in P. schreberi transplants may indicate not only deposition of the radionuclides itself, but also an influx of other pollutants. The results showed no relationship between the Pb-210 activity concentration and activity concentrations of Pb-214, Bi-214, also belonging to the uranium-radium decay series. The increased concentration of Pb-210 in P. schreberi may be the result of the radionuclide atmospheric deposition, which appears in the environment as a result of fossil fuels burning. Excess, allogeneic Pb-210 can be used as marker of environmental pollution. In the areas with its higher activity concentration increased pollution can be expected delivered, for example, by local industry. The Project received financial assistance from the funds of the National Science Centre, granted by force of the decision no. UMO-2013/09/B/NZ8/03340 (NCN).
Czasopismo
Rocznik
Tom
Strony
19--29
Opis fizyczny
Bibliogr. 25 poz., wykr., tab., rys.
Twórcy
autor
- Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, ul. Kanonia 6/8, 50-328 Wrocław, Poland, grzegorz.kosior@uwr.edu.pl
autor
- Independent Department of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6, 45-035 Opole, Poland
autor
- Independent Department of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6, 45-035 Opole, Poland
Bibliografia
- [1] AMAP Assessment 2002: Radioactivity in the Arctic. Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway: 2004. http://www.amap.no/, accessed 10.12.2016.
- [2] Mietelski JW, Olech MA, Sobiech-Matura K, Howard BJ, Gaca P, Zwolak M, et al. 137Cs, 40K, 238Pu, 239+240Pu and 90Sr in biological samples from King George Island (Southern Shetlands) in Antarctica. Polar Biol. 2008;31:1081-1089. DOI: 10.1007/s00300-008-0449-5.
- [3] Paatero J, Vira J, Siitari-Kauppi M, Hatakka J, Holmén K, Viisanen Y. Airborne fission products in the high Arctic after the Fukushima nuclear accident. J Environ Radioac. 2012;114:41-47. DOI: 10.1016/j.jenvrad.2011.12.027.
- [4] Smith JN. 239,240Pu transport into the Arctic Ocean from underwater nuclear tests in Chernaya Bay, Novaya Zemlya. Continent. Shelf Res. 2000;20:255-279. DOI: 10.1016/S0278-4343(99)00066-7.
- [5] Michalik B, Brown J, Krajewski P. The fate and behaviour of enhanced natural radioactivity with respect to environmental protection. Environ Impact Assess Rev. 2013;38:163-171. DOI: 10.1016/j.eiar.2012.09.001.
- [6] Olszowski T. Changes in PM10 concentration due to large-scale rainfall. Arab J Geosci. 2016;9:160. DOI: 10.1007/s12517-015-2163-2
- [7] Alonso-Hernandez C, Guillen-Arruebarrena A, Cartas-Aguila A, Morera-Gomez Y, Diaz-Asencio M. Observations of fallout from the Fukushima Reactor Accident in Cienfuegos, Cuba. Bull En. Contam Toxic. 2012;88:752-754. DOI: 10.1007/s00128-012-0542-x.
- [8] Ioannidou A, Manenti S, Gini L, Groppi F. Fukushima fallout at Milano, Italy. J Environ Radioact. 2012;114:119-125. DOI: 10.1016/j.jenvrad.2012.01.006.
- [9] Conti ME, Cecchetti G. Biological monitoring: lichens as bioindicators of air pollution assessment a review. Environ Pollut. 2001;114:471-492. DOI: 10.1016/S0269-7491(00)00224-4.
- [10] Lukšienė B, Marčiulionienė D, Gudelienė I, Schönhofer F. Accumulation and transfer of 137Cs and 90Sr in the plants of the forest ecosystem near the Ignalina Nuclear Power Plant. J Environ Radioact. 2013;116:1-9. DOI: 10.1016/j.jenvrad.2012.09.00 5.
- [11] Yoshihara T, Matsumura H, Hashida SN, Nagaoka T. Radiocesium contaminations of 20 wood species and the corresponding gamma-ray dose rates around the canopies at 5 months after the Fukushima nuclear power plant accident. J Environ Radioact. 2013;115:60-68. DOI: 10.1016/j.jenvrad.2012.07.002.
- [12] Todorović D, Popović D, Ajtić J, Nikolić J. Leaves of higher plants as biomonitors of radionuclides (137Cs, 40K, 210Pb and 7Be) in urban air. Environ Sci Pollut Res. 2012;20:525-532. DOI: 10.1007/s11356-012-0940-y.
- [13] Szczepaniak K, Biziuk M. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ Research. 2003;93:221-230. DOI: 10.1016/S0013-9351(03)00141-5.
- [14] Ares A, Aboal JR, Carballeira A, Giordano S, Adamo P, Fernandez JA. Moss bag biomonitoring - a methodological review. Sci Total Environ. 2012;432:143-158. DOI: 10.1016/j.scitotenv.2012.05.087.
- [15] Bleise A, Smodis B. Internationally Harmonized Approach to Biomonitoring Trace Element Atmospheric Deposition. Joint Institute for Nuclear Research, Advanced Research Workshop, Monitoring of Natural and Man-Made Radionuclides and Heavy Metal Waste in Environment, 3-6 October 2000. Dubna, Russia.
- [16] Steinnes E. Use of mosses to study atmospheric deposition of trace elements: Contributions from investigations in Norway. Internat J Environ Pollut. 2008;32:499-508. DOI: 10.1504/IJEP.2008.018413.
- [17] Suchara I, Sucharova J, Hola M, Reimann C, Boyd R, Filzmoser P, et al. The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: A comparative study at the scale of the Czech Republic. Sci. Total Environ. 2011;409:2281-2297. DOI: 16/j.scitotenv.2011.02.003.
- [18] Krmar M, Radnovic D, Mihailovic DT, Lalic B, Slivka J, Bikit I. Temporal variations of 7Be, 210Pb and 137Cs in moss samples over 14 month period. Appl Radiat Isot. 2009;67:1139-1147. DOI: 10.1016/j.apradiso.2009.01.001.
- [19] Ziembik Z, Dołhańczuk-Środka A, Majcherczyk T, Wacławek M. Illustration of constrained composition statistical methods in the interpretation of radionuclide concentrations in the moss Pleurozium schreberi. J Environ Radioact. 2013;117:13-18. DOI: 10.1016/j.jenvrad.2012.04.002.
- [20] Dołhańczuk-Śródka A, Ziembik Z, Wacławek M, Hyšplerová L. Transfer of cesium-137 from forest soil to moss Pleurozium schreberi. Ecol Chem Eng S. 2011;18(4):509-516. http://tchie.uni.opole.pl/freeECE/S_18_4/DolhanczukSrodkaZiembik_18(S4).pdf.
- [21] Kłos A, Rajfur M, Czora M, Wacławek M. Mechanisms for translocation of heavy metals from soil to epigeal mosses. Water Air Soil Pollut. 2012;223:1829-1836. DOI: 10.1007/s11270-011-0987-2.
- [22] Kosior G, Samecka-Cymerman A, Chmielewski A, Wierzchnicki R, Derda M, Kempers AJ. Native and transplanted Pleurozium schreberi (Brid.) Mitt. as a bioindicator of N deposition in a heavily industrialized area of Upper Silesia (S Poland). Atmos Environ. 2008;42(6):1310-1318. DOI: 10.1016/j.atmosenv.2007.10.086.
- [23] Samecka-Cymerman A, Kolon K, Kempers AJ. A comparison of native and transplanted Fontinalis antipyretica Hedw. as biomonitors of water polluted with heavy metals. Sci Total Environ. 2005;341:97-107. DOI: 10.1016/j.scitotenv.2004.09.026.
- [24] Ciesielczuk T, Olszowski T, Prokop M, Kłos A. Application of mosses to identification of emission sources of polycyclic aromatic hydrocarbons. Ecol Chem Eng S. 2012;19(4):585-595. DOI: 10.2478/v10216-011-0041-8.
- [25] http://www.nndc.bnl.gov/nudat2/
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5d59deef-f535-4ad2-8405-3b25a311e349