Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 67, no. 1 | 69--82
Tytuł artykułu

Large versus bounded solutions to sublinear elliptic problems

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let L be a second order elliptic operator with smooth coefficients defined on a domain Ω ⸦ Rd (possibly unbounded), d ≥ 3. We study nonnegative continuous solutions u to the equation Lu(x) - φ (x, u(x)) = 0 on Ω, where φ is in the Kato class with respect to the first variable and it grows sublinearly with respect to the second variable. Under fairly general assumptions we prove that if there is a bounded nonzero solution then there is no large solution.
Wydawca

Rocznik
Strony
69--82
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Institute of Mathematics, Wrocław University, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland, edamek@math.uni.wroc.pl
  • Department of Mathematical, Analysis and Applications, University Tunis El Manar, LR11ES11, 2092 El Manar 1, Tunis, Tunisia, zeineb.ghardallou@ipeit.rnu.tn
Bibliografia
  • [1] G. Astarita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, 1974.
  • [2] C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Anal. Math. 58 (1992), 9-24.
  • [3] K.-S. Cheng and W.-M. Ni, On the structure of the conformal scalar curvature equation on Rn, Indiana Univ. Math. J. 41 (1992), 261-278.
  • [4] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222.
  • [5] J. I. Díaz, J. Hernández and J. M. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J. Math. 79 (2011), 233-245.
  • [6] T.-L. Dinu, Entire solutions of sublinear elliptic equations in anisotropic media, J. Math. Anal. Appl. 322 (2006), 382-392.
  • [7] K. El Mabrouk, Entire bounded solutions for a class of sublinear elliptic equations, Nonlinear Anal. 58 (2004), 205-218.
  • [8] K. El Mabrouk, Positive solutions to singular semilinear elliptic problems, Positivity 10 (2006), 665-680.
  • [9] K. El Mabrouk and W. Hansen, Nonradial large solutions of sublinear elliptic problems, J. Math. Anal. Appl. 330 (2007), 1025-1041.
  • [10] W. J. Feng and X. Y. Liu, Existence of entire solutions of a singular semilinear elliptic problem, Acta Math. Sinica 20 (2004), 983-988.
  • [11] Z. Ghardallou, Positive solution to a nonlinear elliptic problem, Potential Anal. 44 (2016), 449-472.
  • [12] Z. Ghardallou, Positive solutions to sublinear elliptic problems, Colloq. Math. 155 (2019), 107-125.
  • [13] J. V. Goncalves and A. Roncalli, Existence, non-existence and asymptotic behavior of blow-up entire solutions of semilinear elliptic equations, J. Math. Anal. Appl. 321 (2006), 524-236.
  • [14] Z. Guo, D. Ye and F. Zhou, Existence of singular positive solutions for some semilinear elliptic equations, Pacific J. Math. 236 (2008), 57-71.
  • [15] J. Hernández, F. J. Mancebo and J. M. Vega, Positive solutions for singular nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 41-62.
  • [16] A. V. Lair, Large solutions of semilinear elliptic equations under the Keller-Osserman condition, J. Math. Anal. Appl. 328 (2007), 1247-1254.
  • [17] A. V. Lair, Large solutions of mixed sublinear/linear elliptic equations, J. Math. Anal. Appl. 346 (2008), 99-106.
  • [18] A. Lair and A. Mohammed, Entire large solutions of semilinear elliptic equations of mixed type, Comm. Pure Appl. Anal. 8 (2009), 1607-1618.
  • [19] A. Lair, Z. J. Proano and A. W. Wood, Existence of large solutions to non-monotone semilinear elliptic equations, Austral. J. Math. Anal. Appl. 4 (2007), no. 2, art. 14, 7 pp.
  • [20] A. V. Lair and A. W. Shaker, Classical and weak solutions of a singular semilinear elliptic problems, J. Math. Anal. Appl. 211 (1997), 371-385.
  • [21] A. V. Lair and A. W. Wood, Large solutions of sublinear elliptic equations, Nonlinear Anal. 39 (2000), 745-753.
  • [22] A. C. Lazer and P. J. McKenna, On a problem of Bieberbach and Rademacher, Nonlinear Anal. 21 (1993), 327-335.
  • [23] A. Mohammed, Ground state solutions for singular semi-linear elliptic equations, Nonlinear Anal. 71 (2009), 1276-1280.
  • [24] S. L. Pohozhaev, The Dirichlet problem for the equation u = u2, Soviet Math. Dokl. 1 (1960), 1143-1146.
  • [25] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979-1000.
  • [26] J. Shi and M. Yao, Positive solutions for elliptic equations with singular nonlinearity, Electron. J. Differential Equations 2005, no. 04, 11 pp.
  • [27] C. A. Stuart, Existence and approximation of solutions of non-linear elliptic equations, Math. Z. 147 (1976), 53-63.
  • [28] Y. Sun and S. Li, Structure of ground state solutions of singular semilinear elliptic equations, Nonlinear Anal. 55 (2003), 399-417.
  • [29] D. Ye and F. Zhou, Existence and nonexistence of entire large solutions for some semilinear elliptic equations, J. Partial Differential Equations 21 (2008), 253-262.
  • [30] Z. Zhang, A remark on the existence of positive entire solutions of a sublinear elliptic problem, Nonlinear Anal. 67 (2007), 147-153.
  • [31] Z. Zhang and J. Cheng, Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems, Nonlinear Anal. 57 (2004), 473-484.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5d410ba1-b1d0-4929-976d-c8d25d2d8834
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.