Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 9 | 316--327
Tytuł artykułu

Toxicity Assessment of Tanning Effluents Treated via Electrocoagulation and Ozonation Using a Bioassay with Lactuca sativa L.

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the aim is to assess the toxicity of tannery wastewater treated with electrocoagulation and ozonation to determine the suitability of the approach for application, while maintaining the environmental quality of receiving water bodies and/or sewer systems. For this, an electrocoagulation reactor and an ozonation tank were built considering current intensity (I), treatment time (T), and ozone concentration O3 as operating factors. Acute toxicity tests were conducted using Lactuca sativa L. lettuce seeds for the raw sample (MI), sample treated with electrocoagulation (EC), and sample treated with EC and ozonation (EC+OZ). The toxicity parameters assessed in this study were the absolute germination (AG), germination index (GI), and average inhibition concentration (EC50). The electrocoagulation reactor achieved 92% removal efficiency for total suspended solid (TSS) and 10% removal efficiency for chemical oxygen demand (COD) with a current intensity of 7A and a treatment time of 30 min. In addition, the COD was further reduced in the ozonation tank by 18% with an ozone dosage of 10 g/h and a contact time of 30 min. Despite these treatments, EC50 values indicated acute toxicity in all three samples. The ANOVA analysis (p value of 0.05) revealed no significant differences between the GI values for the three samples, suggesting that toxicity did not decrease substantially, despite treatment. This is attributed to the incomplete removal of the pollutant load, expressed as COD, and formation of recalcitrant and toxic compounds during treatment processes. This work demonstrates the importance of including the “toxicity” variable in the assessment of treatments to conduct them in an integral way and preserve the environmental quality of receiving water bodies.
Słowa kluczowe
Wydawca

Rocznik
Strony
316--327
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Instituto de Investigación Científica, Grupo de Investigación en Tecnologías, Exponenciales, Estudios Generales, Universidad de Lima, Av. Javier Prado 4600, Surco, Lima, Perú, eaguilaa@ulima.edu.pe
  • Centro de Innovación Productiva y Transferencia Tecnológica del Cuero, Calzado e Industrias Conexas (CITEccal Lima), Instituto Tecnológico de la Producción (ITP), Caquetá Ave.1300, Rímac, 15094, Lima, Perú, lmarrufo@itp.gob.pe
  • Centro de Innovación Productiva y Transferencia Tecnológica del Cuero, Calzado e Industrias Conexas (CITEccal Lima), Instituto Tecnológico de la Producción (ITP), Caquetá Ave.1300, Rímac, 15094, Lima, Perú, jbarra@itp.gob.pe
Bibliografia
  • 1. Aguilar-Ascón, E., Marrufo-Saldaña, L., Neyra-Ascón, W. 2019. Reduction of total chromium levels from raw tannery wastewater via electrocoagulation using response surface methodology. Journal of Ecological Engineering, 20(11), 217–224. https://doi.org/10.12911/22998993/113191
  • 2. Aguilar, E., Marrufo, L., Neyra, W.W. 2020. Efficency of electrocoagulation method to reduce COD, BOD and TSS in tannery industry wastewater: application of the box behnken design. Leather and Footwear Journal.
  • 3. Ahmed, M.D. and Maraz, K.M. 2021. Benefits and problems of chromium tanning in leather processing: Approach a greener technology in leather industry. Mater Eng Res, 3(1), 156–164. https://doi.org/10.25082/MER.2021.01.004
  • 4. Apaydin, O., Kurt, U., Gonullu, M. 2009. An investigation on the treatment of tan nery wastewater by electrocoagulation. Glob. NEST J. 11(4), 546e555.
  • 5. Asaithambi, P., Modepalli, S., Saravanathamizhan, R., Manickam, M. 2012. Ozone assisted electrocoagulation for the treatment of distillery effluent. Desalination, 297. 1–7. https://doi.org/10.1016/j.desal.2012.04.011
  • 6. Asaithambi, P., Aziz, A.R.A., Daud, W.M.A.B.W. 2016. Integrated ozone-electrocoagulation process for the removal of pollutant from industrial effluent: optimization through response surface methodology. Chem. Eng. Process, 105, 92–102. https://doi.org/10.1016/j.cep.2016.03.013
  • 7. Barra-Hinojosa, J., Marrufo-Saldaña, L., SalazarLeiva, V., Gomez-León, M., Solis-Veliz, J. 2024. Optimization of chromium removal from tannery effluents with natural zeolite neonite. Echo. Eng. Environ. Technol., 2024; 2, 41–53.
  • 8. Barzegar, G., Wu, J., Ghanbari, F. 2019. Enhanced treatment of greywater, using electrocoagulation/ ozonation: Investigation of process parameters. Process Safety and Environmental Protection, 121. https://doi.org/10.1016/j.psep.2018.10.013
  • 9. Calow, P., Forbes, V.E. 2003. Does ecotoxicology inform ecological rrisk assessment? Environ. Sci. Technol., 37(7), 146A−151A. https://doi.org/10.1016/j.envadv.2023.100478
  • 10. Castillo-Morales, G. 2004. Toxicological tests and water quality assessment methods: standardization, intercalibration, results and applications. Mexican Institute of Water Technology. International Development Research Centre (IDRC).
  • 11. Core Team, R. 2023. A: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
  • 12. Dewil, R., Mantzavinos, D., Poulios, I., Rodrigo, M.A. 2017. New perspectives for Advanced Oxidation Processes. J. Environ. Manag., 195, 93–99. [CrossRef]
  • 13. De Pauli, A.R., Espinoza-Quiñones, F.R., Trigueros, D.E.G., Módenes, A.N., de Souza, A.R.C., Borba, F.H., Kroumov, A.D. 2018. Integrated two-phase purification procedure for abatement of pollutants from sanitary landfill leachates, Chem. Eng. J., 334, 19–29, https://doi.org/10.1016/j.cej.2017.10.028
  • 14. Elabbas, N., Ouazzani, L., Mandi, F., Berrekhis, M., Perdicakis, S., Pontvianne, M.N., Pons, F., Lapicque, J.P. 2016. Treatment of highly concentrated tannery wastewater using electrocoagulation: influence of the quality of aluminum used for the electrode. Journal of Hazardous Materials, 319, 69–77. https://doi.org/10.1016/j.khazmat.2015.12.067
  • 15. Espinoza-Quinones, F.R., Fornari, M.M., Modenes, A.N., Palacio, S.M., Trigueros, D.E., Borba, F.H., Kroumov, A.D. 2009. Electrocoagulation efficiency of the tannery effluent treatment using aluminium electrodes. Water Science and Technology, 60(8), 2173–2185.
  • 16. Esfandyari, Y., Saeb, K., Tavana, A., Rahnavard, A., Fahimi, F.G. 2019. Effective removal of cefazolin from hospital wastewater by the electrocoagulation process. Water Sci Technol., 80(12), 2422–2429. https://doi.org/10.2166/wst.2020.003.PMID:32245934
  • 17. Garcia-Morales, J., Roa-Morales, M.A., BarreraDíaz, C., Miranda, V.M., Hernández, P.B., Silva, T.P. 2013. Integrated advanced oxidation process (ozonation) and electrocoagulation treatments for dye removal in denim effluents. International Journal of Electrochemical Science, 8(6), 8752–8763.
  • 18. GilPavas, E., Dobrosz-Gómez, I. and Gómez García, M.A. 2020. “Efficient treatment for textile wastewater through sequential electrocoagulation, electrochemical oxidation and adsorption processes: Optimization and toxicity assessment”, Journal of Electroanalytical Chemistry, 878.
  • 19. Hansen, É., Aquim, P., Hansen, A., Cardoso, J., Ziulkoski, A., Mariliz, G. 2020. Impact of posttanning chemicals on the pollution load of tannery wastewater. Journal of Environmental Management, 269, 110787. https://doi.org/10.1016/j.jenvman.2020.110787
  • 20. Hernández-Ortega, M., Ponziak, T., Barrera-Díaz, C., Rodrigo, M.A., Roa-Morales, G., Bilyeu, B. 2010. Use of a combined electrocoagulation–ozone process as a pretreatment for industrial wastewater. Desalination, 250, 144–149. https://doi.org/10.1016/j.desal.2008.11.021
  • 21. Jallouli, S., Wali, A., Buonerba A., Zarra, T., Belgiorno, V., Naddeo, V., Ksibi, M. 2020. Efficient and sustainable treatment of tannery wastewater by a sequential electrocoagulation-UV photolytic process. https://doi.org/10.1016/j.jwpe.2020.101642
  • 22. Jason, B. 2020. Chapter 28 - Introduction to ecotoxicology. An Introduction to Interdisciplinary Toxicology, Academic Press, 381–393. https://doi.org/10.1016/B978-0-12-813602-7.00028-4
  • 23. Joseph, C.G., Farm, Y.Y., Taufiq-Yap, Y.H., Pang, C.K., Nga, J.L., Puma, G.L. 2021. Ozonation treatment processes for the remediation of detergent wastewater: a comprehensive review. J. Environ. Chem. Eng., 106099. https://doi.org/10.1016/j.jece.2021.106099
  • 24. Joshi, S., Gogate, P. 2019. Treatment of landfill leachate using different configurations of ultrasonic reactors combined with advanced oxidation processes. Separation and Purification Technology, 211. https://doi.org/10.1016/j.seppur.2018.09.060
  • 25. Kamaraj, R., Vasudevan, S. 2015. Evaluation of electrocoagulation process for the removal of strontium and cesium from aqueous solution. Chem Eng Res Des, 93, 522–530.
  • 26. Kanagaraj, J., Panda, R.C., Kumar, M.V. 2020. Trends and advances in sustainable leather processing: Future directions and challenges - A review. Journal of Environmental Chemical Engineering, 8. https://doi.org/104379.10.1016/j.jece.2020.104379
  • 27. Koyuncu, S., Ariman, S. 2020. Domestic wastewater treatment by real scale electrocoagulation process. Water Science and Technology, 81. https://doi.org/10.2166/wst.2020.128
  • 28. Laconi, D.C., Ramadori, R., Lopez, A. 2009. The effect of ozone on tannery wastewater biological treatment at demonstrative scale. Bioresource technology., 100. 6121–4. https://doi.org/10.1016/j.biortech.2009.06.022
  • 29. Lanzetta, A., Papirio, S., Oliva, A., Cesaro, A., Pucci, L., Capasso, E.M., Esposito, G., Pirozzi, F. 2023. Ozonation processes for color removal from urban and leather tanning wastewater. Water, 15, 2362. https://doi.org/10.3390/w15132362
  • 30. Liu, Y., Yang, J., Jiang, W., Chen, Y., Yang, Ch., Wang, T., Li, Y. 2018. Experimental studies on the enhanced performance of lightweight oil recovery using a combined electrocoagulation and magnetic field processes. Chemosphere, 205, 601–609. https://doi.org/10.1016/j.chemosphere.2018.04.113
  • 31. Liu, Z., Demeester, K., Hulle, S.V. 2021. Comparison and performance assessment of ozone-based AOPs in view of trace organic pollutants abatement in water and wastewater: a review, J. Environ. Chem. Eng., 9, 105–599. https://doi.org/10.1016/j.jece.2021.105599
  • 32. Lotito, A.M., Fratino, U., Bergna, G., Di Iaconi, C. 2012. Integrated biological and ozone treatment of printing textile wastewater. Chemical Engineering Journal. 195–196, 261–269. https://doi.org/10.1016/j.cej.
  • 33. Manenti, D.R., Modenes, A.N., Soares, P.A., Boaventura, R.A., Palácio, S.M., Borba, F.H., Vilar, V.J. 2015. Biodegradability and toxicity assessment of a real textile wastewater effluent treated by an optimized electrocoagulation process. Environmental technology, 36(4), 496–506.
  • 34. Methneni, N., Morales-González, J.A., Jaziri, A., Mansour, H.B., Fernández-Serrano, M. 2021. Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: Ecotoxicology appraisal via a battery of biotests. Environmental Research, 196, 110956.
  • 35. Meyer, M., Dietrich, S., Schulz, H., Mondschein, A. 2021. Comparison of the technical performance of leather, artificial leather, and trendy alternatives. Coatings. 11, 226. https://doi.org/10.3390/coatings11020226
  • 36. Moktadir, Md., Maliha, M., Fatematujjohra, Munmun, S.A., Alam, Md.S., Islam, Md.A., Rahman, M. 2023. Treatment of tannery wastewater by different membrane bioreactors: A critical review. Environmental Advances. 15, 100478. https://doi.org/10.1016/j.envadv.2023.100478
  • 37. Mwinyihija, M. 2010. Ecotoxicological diagnosis in the tanning industry. Springer Science & Business Media.
  • 38. Palácio, S.M., Espinoza-Quiñones, F.R., Modenes, A.N., Oliveira, C.C., Borba, F.H., Silva, F.G. 2009. Toxicity assessment from electro-coagulation treated-textile dye wastewater by bioassays. Journal of Hazardous Materials, 172(1), 330–337. https://doi.org/10.1016/j.jhazmat.2009.07.015
  • 39. Peralta-Hernandez, J.M., Rodrigo–Rodrigo, M.A., Martinez-Huitle, C.A. 2014. Evaluation of electrochemical reactors as a new way to environmental protection. Kerala, India: Research Signpost.
  • 40. Persoone, G., Marsalek, B., Blinova, I., Törökne, A., Zarina, D., Manusadzianas, L., Kolar, B. 2003. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewater. Environmental Toxicology: An International Journal, 18(6), 395–402.
  • 41. Preethi, V., Kalyani, P.K.S., Iyappan, K., Srinivasakannan, C., Balasubramaniam, N. and Vedaraman, N. 2009. Ozonation of tannery effluent for removal of cod and color. J. Hazar. Mater., 166, 150–154.
  • 42. Plumlee, M.H., Stanford, B.D., Debroux, J.-F., Hopkins, D.C. and Snyder, S.A. 2014. Costs of advanced treatment in water reclamation. Ozone: Science & Engineering, 36, 485–95. https://doi.org/10.1080/01919512.201.921565
  • 43. Rodriguez-Narvaez, O.M., Peralta-Hernandez, J.M., Goonetilleke, A., Bandala, E.R. 2017. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J., 323, 361–380. [CrossRef].
  • 44. Sameh, J., Wali, A., Buonerba, A., Zarra, T., Belgiorno, V., Naddeo, V., Ksibi, M. 2020. Efficient and sustainable treatment of tannery wastewater by a sequential electrocoagulation-UV photolytic Process. arXiv preprint arXiv:2010.03285.
  • 45. Saranya, D., Shanthakumar, S. 2020. An integrated approach for tannery effluent treatment with ozonation and phycoremediation: a feasibility study. Environmental Research 183, 109163. https://doi.org/10.1016/J.ENVRES.2020.109163
  • 46. Sekar, A.S.S. 2008. Removal of colour from tannery dye wastewater using ozone. nature environment and pollution technology, [S.l.], 505–508, Available at: <https://www.i-scholar.in/index.php/NEPT/article/view/114228>.Date accessed: 21 Jun. 2024.
  • 47. Schrank, S.G., Humberto, W.G., José, J., Moreira R.F.P.M., Horst Fr. S. 2016. ozone treatment of tannery wastewater monitored by conventional and substance specific wastewater analyses, ozone: Science & Engineering. http://dx.doi.org/10.1080/ 01919512.2016.1273090
  • 48. Schroeder, J., Croot, P., Dewitz, B., Waller, U., Hanel, R. 2011. Potential and limitations of ozone for the removal of ammonium, nitrite, and yellow substances in marine recirculating aquaculture systems. Aquaculture Engineering, 45, 35–41. https://doi.org/10.1016/j.aquaeng.2011.06.001
  • 49. Shahedi, A., Darban, A.K., Taghipour, F., JamshidiZanjani, A.J.C.O.I.E. 2020. A review on industrial wastewater treatment via electrocoagulation processes. Current opinion in electrochemistry, 22, 154169. https://doi.org/10.1016/j.coelec.2020.05.009
  • 50. Sudha, T., Thanikaivelan, P., Phebe, K., Kaliappa, K., Chandrasekaran, B. 2009. Comfort, chemical, mechanical, and structural properties of natural and synthetic leathers used for apparel. Journal of Applied Polymer Science, 114. 1761–1767. https://doi.org/10.1002/app.30589
  • 51. Susanto, H., Juhana, S. 2023. Reduction of pollutants in the tanning industry using the reverse tanning method against the physical properties of leather. Leather and Footwear Journal, 23. 3–10. https://doi.org/10.24264/lfj.23.1.1
  • 52. Yan, Z.Q., Wang, D.D., Ding, L., Cui, H.Y., Jin, H., Yang, X.Y., Yang, J.S., Qin, B. 2015. Mechanism of artemisinin phytotoxicity action: Induction of reactive oxygen species and cell death in lettuce seedlings. Plant Physiol. Biochem., 88, 53–59.
  • 53. Zaroual, Z., Azzi, M., Saib, N., Chainet, E. 2006. Contribution to the study of electrocoagulation mechanism in basic textile effluent. J Hazard Mater., 131, 73–78.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5d17d665-495a-41d1-91e6-ba214cebe63b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.