Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 5, no. 4 | 99--106
Tytuł artykułu

Hydrophobic membranes for system monitoring underwater gas pipelines

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to prepare hydrophobic membranes as selective barriers to be applied in gas sensors. Two kinds of membranes were investigated: ceramic, modified with perfluoroalkylsilanes (C6F13C2H4Si(OEt)3 – C6 and C12F25C2H4Si(OEt)3 – C12) and formed from polydimethylsiloxane (PDMS). Inorganic membranes properties after modification were tested by determining the contact angle (CA). Membrane modified by C12 was more hydrophobic (CA=148°) compared with membrane modified by C6 (CA=135°). PDMS membranes of different thickness (75-195 μm) were formed and their properties were determined by pervaporation of water and by contact angle measurements. It was shown that water transport is inversely proportional to membrane thickness and permeability coefficient was equal to 7.3_10-15 mol m-1 Pa-1 s-1. Contact angle was equal to 104°±4°. The commercial PDMS membrane properties were tested in pervaporation of water-ethanol, water-pentane and water-hexane systems and it was found that organic compound is selectively transported through the membrane (enrichment factors were equal to 4-8, 75 and 120 for ethanol, pentane and hexane, respectively). Preferential transport of organic compounds was also discussed using Hansen’s solubility parameters.
PL
Celem pracy było otrzymanie membran hydrofobowych, przewidzianych do zastosowań w sensorach gazowych. Zbadano właściwości membran: ceramicznych, modyfikowanych powierzchniowo perfluoroalkilosilanami: (C6F13C2H4Si(OEt)3 – C6 i C12F25C2H4Si(OEt)3 – C12) oraz membran uformowanych z poli(dimetylosiloksanu) (PDMS). Właściwości membran ceramicznych po modyfikacji charakteryzowano poprzez pomiar kąta zwilżania (CA). Membrana modyfikowana roztworem C12 (CA=148°) posiadała bardziej hydrofobowe właściwości niż membrana modyfikowana C6 (CA=135°). Uformowano membrany z PDMS o różnej grubości (75-195 μm), oznaczono kąt zwilżania dla wody oraz określono ich właściwości perwaporacyjne w kontakcie z wodą. Wykazano, że transport wody przez membranę jest odwrotnie proporcjonalny do grubości błony, a współczynnik przepuszczalności wody wynosi 7.3_10-15 mol m-1 Pa-1 s-1. Właściwości komercyjnej membrany PDMS określono w kontakcie z mieszaninami: woda-etanol, woda-pentan i woda-heksan. Wykazano przy tym, iż składnik organiczny był selektywnie transportowany przez membranę (współczynniki wzbogacenia dla etanolu, pentanu i heksanu wyniosły odpowiednio 4-8, 75 i 120). Preferencyjny transport składników organicznych zinterpretowano również, stosując współczynniki rozpuszczalności Hansena.
Wydawca

Rocznik
Strony
99--106
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • Nicolaus Copernicus University, Faculty of Chemistry, 7 Gagarina Street, Toruń, Poland
autor
  • Nicolaus Copernicus University, Faculty of Chemistry, 7 Gagarina Street, Toruń, Poland, kujawski@chem.umk.pl
  • Bruno Kessler Foundation, Via Sommarive, 18 38100 Povo di Trento, Italy
  • Bruno Kessler Foundation, Via Sommarive, 18 38100 Povo di Trento, Italy
autor
  • Russian Research Centre “Kurchatov Institute”, Kurchatov sq., 1, 123182, Moscow, Russian Federation
autor
  • Russian Research Centre “Kurchatov Institute”, Kurchatov sq., 1, 123182, Moscow, Russian Federation
Bibliografia
  • [1] Concise Statistical Yearbook of Poland 2011, Central Statistical Office, Warsaw 2011, p.524
  • [2] Vasiliev A., Pavelko R., Gogish-Klushin S., Kharitinov D., Gogish-Klushina O., Pisliakov A., Sokolov A., Samotaev N., Guarnieri V., Zen M., Lorenzelli L.; Sensors based on technology “nano-on-micro” for wireless instruments preventing ecological and industrial catastrophes in Sensors for Environment. Health and Security (Ed. M.-I. Baraton) 2009, p.205-227
  • [3] Vasiliev A.A., Pavelko R.G., Gogish-Klushin S., Kharitonov D., Gogish-Klushina O., Sokolov A.V., Pisliakov A.V., Samotaev N.N.; Alumina MEMS platform for impulse semiconductor and IR optic gas sensors, Sens. Actuators, B Vol.132, 2008; p.216-223
  • [4] Rozicka A., Kujawski W., Guarnieri V., Lorenzelli L., Vasiliev A., Filippov V.; Monitoring systems for underwater pipelines. 1. Preparation of hydrophobic membranes. Membrany i Procesy Membranowe w Ochronie Środowiska Monografie Komitetu Inżynierii Środowiska PAN, Vol.95 (Ed. K. Konieczny, I. Korus) 2012; p.191-203
  • [5] Larbot A., Gazagnes L., Krajewski S., Bukowska M., Kujawski W.; Water desalination using ceramic membranę distillation. Desalination, Vol.168, 2004; p.367-372
  • [6] Seo J., Lee L.P.; Effects on wettability by surfactant accumulation/depletion in bulk polydimethylsiloxane (PDMS). Sens. Actuators B, Vol.119, 2006; p.192-198
  • [7] Leger C., Lira H.L., Paterson R.; Preparation and properties of surface modified ceramic membranes. Part II. Gas and liquid permeabilities of 5 nm alumina membranes modified by a monolayer of bound polydimethylsiloxane (PDMS) silicone oil. J. Membr. Sci., Vol.120, 1996; p.135-146
  • [8] Kujawski W., Kerres J., Roszak R.; Application of ABcrosslinked polymers composed of styrene/isoprenesiloxane copolymers to pervaporative removal of volatile organic compounds from water. J. Membr. Sci., Vol.218, 2003; p.211-218
  • [9] Lederer T., Hilber W., Ove B.J.; Fast thermo-pneumatic actuation of a thin PDMS membrane using a micro Peltier-element for microfluidic applications. Elektrotechnik & Informationstechnik, Vol.126, No.1/2, 2009; p.70-74
  • [10] Chruściel J., Leśniak E., Fejdyś M.; Karbofunkcyjne silany i polisiloksany (Carbofunctional silanes and polysiloxanes). Polimery, Vol.53, 2008; p.817-829 (in Polish)
  • [11] Vankelecom I.F.K., Vercruysse K.A.L., Neys P.E., Tas D.W.A., Janssen K.B.M., Knops-Gerrits P.P., Jacobs P.A.; Novel catalytic membranes for selective reactions. Top. Catal., Vol.5, 1998; p.125-132
  • [12] Peng M., Vane L.M., Liu S.X.; Recent advances in VOCs removal from water by pervaporation. J. Hazard. Mater., Vol.B98, 2003; p.69-90
  • [13] Panek D., Konieczny K.; Pervaporative separation of toluene from wastewaters by use of filled and unfilled poly(dimethylosiloxane) (PDMS) membranes. Desalination, Vol.241, 2009; p.197-200
  • [14] Mohammadi T., Aroujalian A., Bakhshi A.; Pervaporation of dilute alcoholic mixtures using PDMS membrane. Chem. Eng. Sci., Vol.60, 2005; p.1875-1880
  • [15] Lee H.J., Cho E.J., Kim Y.G., Choi I.S., Bae H.J.; Pervaporative separation of bioethanol using a polydimethylsiloxane/ polyetherimide composite hollowfiber membrane. Bioresour. Technol., Vol.109, 2012; p.110-115
  • [16] W. Ji., Sikdar S.K.; Pervaporation Using Adsorbent- Filled Membranes. Ind. Eng. Chem. Res., Vol.35, 1996; p.1124-1132
  • [17] Kujawski W.; Application of Pervaporation and Vapor Permeation in Environmental Protection. Polish Journal of Environmental Studies, Vol.9, No.1, 2000; p.13-26
  • [18] Kujawski W.; Pervaporation and Vapour Permeation – Separation through Nonporous Membranes. Polish Journal of Chemical Technology, Vol.5, No.(2), 2003; p.1-7
  • [19] Chapman P.D., Oliveira T., Livingston A.G., Li K.; Membranes for the dehydration of solvents by pervaporation, J. Membr. Sci., Vol.318, 2008; p.5-37
  • [20] Wijmans J.G., Baker R.W.; The solution-diffusion model: a review, J. Membr. Sci., Vol.107, 1995; p.1-21
  • [21] Sae-Khow O., Mitra S.; Pervaporation in chemical analysis, J. Chromatogr., A, Vol.1217, 2010; p.2736-2746
  • [22] Kwok D.Y., Neumann A.W.; Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci., Vol.81, 1999; p.167-249
  • [23] Lee H.J., Cho E.J., Kim Y.G., Choi I.S., Bae H.J.; Pervaporative separation of bioethanol using a polydimethylsiloxane/ polyetherimide composite hollowfiber membrane. Bioresour. Technol., Vol.109, 2012; p.110-115
  • [24] Khorasani M.T., Mirzadeh H., Kermani Z.; Wettability of porous polydimethylsiloxane surface: morphology study. Appl. Surf. Sci., Vol.242, 2005; p.339-345
  • [25] Kujawski W., Poźniak G., Nguyen Q.T., Neel J.; Properties of Interpolymer PESS Ion-Exchange Membranes in Contact with Solvents of Different Polarity. Sep. Sci. Technol., Vol.32, 1997; p.1657-1667
  • [26] Sridhar S., Smitha B., Shaik A.; Pervaporation-Based Separation of Methanol/MTBE Mixtures – A Review in Separation and Purification Reviews, Vol.34, 2005; p.1-33
  • [27] Shao P., Huang R.Y.M.; Polymeric membrane pervaporation. J. Membr. Sci., Vol.287, 2007; p.162-179
  • [28] Lipnizki F., Trägardh G.; Modeling of Pervaporation: Models to Analyze and Predict the Mass Transport in Pervaporation. Sep. Purif. Methods, Vol.30, No.1, 2001; p.49-125
  • [29] Hansen C.M.; Hansen Solubility Parameters: a user’s handbook in CRC Press Taylor & Francis Group, Boca Raton, London, New York 2007; p.59
  • [30] Alizadeh M., Abbasi F., Farahi M., Jalili K.; Silicone- Based Hydrogels Prepared by Interpenetrating Polymer Network Synthesis: Swelling Properties and Confinements Effects on the Formation Kinetics. J. Appl. Polym. Sci., Vol.124, 2012; p.985-992
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5d0554ee-1719-4297-95bf-d698c4da0515
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.