Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 2 | art. no. e100, 2023
Tytuł artykułu

Thermoelastic vibration characteristics of asymmetric annular porous reinforced with nano-fillers microplates embedded in an elastic medium: CNTs Vs. GNPs

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the vast usage of metal foam structures in branches of science, reinforcing them with nano-fillers makes them more convenient. Hence, in the current study, vibration characteristics of functionally graded porous nanocomposite (FGPN) annular microplates are taken into consideration. Two kinds of nano-fillers, namely Carbon nanotubes (CNTs) and Graphene nanoplatelets (GNPs), are selected as the reinforcements to analyze and compare their effect on the microstructure’s vibrational response. The mentioned nano-fillers are dispersed according to four patterns which affect various mechanical properties of the structure. Similarly, based on given functions which are called porosity distributions, pores are placed in thickness course of the microstructure. Then, its properties are determined via employing Halpin-Tsai and extended rule of mixture micromechanics models. Using the first-order shear deformation theory (FSDT), modified couple stress theory (MCST), and Hamilton’s principle for dynamic systems, governing motion equations and related boundary conditions are derived in asymmetric state, and then, they are solved, and natural frequencies and corresponding mode shapes are extracted with the help of generalized differential quadrature method (GDQM). By validating the results in simpler conditions, effects of the most important parameters are examined. It is found that GNPs are more effective in reinforcing the structure than CNTs. Also, about 15~18 percent reduction in frequencies is seen by increasing the porosity up to seventy percent.
Wydawca

Rocznik
Strony
art. no. e100, 2023
Opis fizyczny
Bibliogr. 66 poz., rys., tab., wykr.
Twórcy
  • Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
autor
  • Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran, samir@kashanu.ac.ir
  • Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
Bibliografia
  • 1. Kiran MC, Kattimani SC. Assessment of porosity influence on vibration and static behaviour of functionally graded magneto-electro-elastic plate: a finite element study. Eur J Mech A/Solids. 2018;71:258-77. https://doi.org/10.1016/j.euromechsol.2018.04.006.
  • 2. Ebrahimi F, Dabbagh A, Taheri M. Vibration analysis of porous metal foam plates rested on viscoelastic substrate. Eng Comput. 2020;37(4):3727-39. https://doi.org/10.1007/S00366-020-01031-W.
  • 3. Wei T, Lu J, Zhang P, Yang G, Sun C, Zhou Y, Zhuang Q, Tang Y. Metal-organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries. Chin Chem Lett. 2022. https://doi.org/10.1016/J.CCLET.2022.107947.
  • 4. Afshar A, Nobakhti A, Shokrgozar A, Afshar A. Simulation of the effects of pozzolanic additives and corrosion inhibitor on the corrosion of reinforced concrete by artificial neural networks. Rev Rom Mater Rom J Mater. 2019;49:535-43.
  • 5. Afshar A, Shokrgozar A, Afshar A, Afshar A. Simulation of corrosion protection methods in reinforced concrete by artificial neural networks and fuzzy logic. J Electrochem Sci Eng. 2022;12:511-27. https://doi.org/10.5599/jese.1220.
  • 6. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56.
  • 7. Chen Y, Long J, Xie B, Kuang Y, Chen X, Hou M, Gao J, Liu H, He Y, Wong C-P. One-step ultraviolet laser-induced fluorine-doped graphene achieving superhydrophobic properties and its application in deicing. ACS Appl Mater Interf. 2022. https://doi.org/10.1021/ACSAMI.1C18559.
  • 8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666-9. https://doi.org/10.1126/science.11028 96.
  • 9. Detournay E, Cheng AH-D. Fundamentals of poroelasticity. Anal: Des. Methods; 1993. https://doi.org/10.1016/B978-0-08-040615-2.50011-3.
  • 10. Bo J. The vertical vibration of an elastic circular plate on a fluid-saturated porous half space. Int J Eng Sci. 1999;37:379-93. https://doi.org/10.1016/s0020-7225(98)00073-1.
  • 11. Zhou K, Huang X, Tian J, Hua H. Vibration and flutter analysis of supersonic porous functionally graded material plates with temperature gradient and resting on elastic foundation. Compos Struct. 2018;204:63-79. https://doi.org/10.1016/j.compstruct.2018.07.057.
  • 12. Muc A, Flis J. Flutter characteristics and free vibrations of rectangular functionally graded porous plates. Compos Struct. 2021;261:113301. https://doi.org/10.1016/J.COMPSTRUCT.2020.113301.
  • 13. Van Vinh P, Van Chinh N, Tounsi A. Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM. Eur J Mech A/Solids. 2022;96:104743. https://doi.org/10.1016/J.EUROMECHSOL.2022.104743.
  • 14. Tahir SI, Chikh A, Tounsi A, Al-Osta MA, Al-Dulaijan SU, Al-Zahrani MM. Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment. Compos Struct. 2021;269:114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  • 15. Al-Osta MA, Saidi H, Tounsi A, Al-Dulaijan SU, Al-Zahrani MM, Sharif A, Tounsi A. Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model. Smart Struct Syst. 2021;28:499-513. https://doi.org/10.12989/SSS.2021.28.4.499.
  • 16. Xue Y, Jin G, Ma X, Chen H, Ye T, Chen M, Zhang Y. Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach. Int J Mech Sci. 2019;152:346-62. https://doi.org/10.1016/J.IJMECSCI.2019.01.004.
  • 17. Cuong-Le T, Nguyen KD, Nguyen-Trong N, Khatir S, Nguyen-Xuan H, Abdel-Wahab M. A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA. Compos Struct. 2021;259:113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  • 18. Bekkaye THL, Fahsi B, Bousahla AA, Bourada F, Tounsi A, Benrahou KH, Tounsi A, Al-Zahrani MM. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory. Comput Concr. 2020;26:450. https://doi.org/10.12989/CAC.2020.26.5.439.
  • 19. Bellifa H, Selim MM, Chikh A, Bousahla AA, Bourada F, Tounsi A, Benrahou KH, Al-Zahrani MM, Tounsi A. Influence of porosity on thermal buckling behavior of functionally graded beams. Smart Struct Syst. 2021;27:728. https://doi.org/10.12989/SSS.2021.27.4.719.
  • 20. Rezaei AS, Saidi AR. An analytical study on the free vibration of moderately thick fluid-infiltrated porous annular sector plates, JVC/Journal Vib. Control. 2018;24:4130-44. https://doi.org/10.1177/1077546317721416.
  • 21. Djilali N, Bousahla AA, Kaci A, Selim MM, Bourada F, Tounsi A, Tounsi A, Benrahou KH, Mahmoud SR. Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT. Steel Compos Struct. 2022;42:779-89. https://doi.org/10.12989/SCS.2022.42.6.779.
  • 22. Zerrouki R, Karas A, Zidour M, Bousahla AA, Tounsi A, Bourada F, Tounsi A, Benrahou KH, Mahmoud SR. Effect of nonlinear FGCNT distribution on mechanical properties of functionally graded nano-composite beam. Struct Eng Mech. 2021;78:117-24. https://doi.org/10.12989/sem.2021.78.2.117.
  • 23. Bourada F, Bousahla AA, Tounsi A, Adda Bedia EA, Mahmoud SR, Benrahou KH, Tounsi A. Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation. Comput Concr. 2020;25:485-95.
  • 24. Ebrahimi F, Hashemabadi D, Habibi M, Safarpour H. Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsyst Technol. 2020;26:461-73. https://doi.org/10.1007/s00542-019-04542-9.
  • 25. Zhang G, Xiao C, Rahimi A, Safarpour M. Thermal and mechanical buckling and vibration analysis of FG-GPLRC annular plate using higher order shear deformation theory and generalized differential quadrature method. Int J Appl Mech. 2020;12(02):2050019. https://doi.org/10.1142/S1758825120500192.
  • 26. Yaghoobi H, Taheri F. Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Compos Struct. 2020;252:112700. https://doi.org/10.1016/j.compstruct.2020.112700.
  • 27. Yang Y, Chen B, Lin W, Li Y, Dong Y. Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation. Aerosp Sci Technol. 2021;110:106495. https://doi.org/10.1016/j.ast.2021.106495.
  • 28. Anirudh B, Ganapathi M, Anant C, Polit O. A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling. Compos Struct. 2019;222:110899. https://doi.org/10.1016/j.compstruct.2019.110899.
  • 29. Zhang Z, Yang F, Zhang H, Zhang T, Wang H, Xu Y, Ma Q. Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating. Mater Charact. 2021;171:110732. https://doi.org/10.1016/J.MATCHAR.2020.110732.
  • 30. Arshid E, Arshid H, Amir S, Mousavi SB. Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch Civ Mech Eng. 2021;21:6. https://doi.org/10.1007/s43452-020-00150-x.
  • 31. Sobhy M, Zenkour AM. Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory. Compos Struct. 2019;220:289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.
  • 32. Liu G, Wu S, Shahsavari D, Karami B, Tounsi A. Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation. Eur J Mech A/Solids. 2022;95:104649. https://doi.org/10.1016/J.EUROMECHSOL.2022.104649.
  • 33. Van Vinh P, Tounsi A, Belarbi MO. On the nonlocal free vibration analysis of functionally graded porous doubly curved shallow nanoshells with variable nonlocal parameters. Eng Comput. 2022. https://doi.org/10.1007/S00366-022-01687-6.
  • 34. Barati MR, Zenkour AM. Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions. Compos Struct. 2017;182:91-8.
  • 35. Akgoz B, Civalek O. A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation. Compos Struct. 2017;176:1028-38. https://doi.org/10.1016/J.COMPSTRUCT.2017.06.039.
  • 36. Huang Y, Karami B, Shahsavari D, Tounsi A. Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Arch Civ Mech Eng. 2021;21(4):1-15. https://doi.org/10.1007/S43452-021-00291-7.
  • 37. Rao R, Sahmani S, Safaei B. Isogeometric nonlinear bending analysis of porous FG composite microplates with a central cutout modeled by the couple stress continuum quasi-3D plate theory. Arch Civ Mech Eng. 2021;21:1-17. https://doi.org/10.1007/S43452-021-00250-2.
  • 38. Kim J, Żur KK, Reddy JN. Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos Struct. 2019;209:879-88. https://doi.org/10.1016/j.compstruct.2018.11.023.
  • 39. Shojaeefard MH, Saeidi Googarchin H, Ghadiri M, Mahinzare M. Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT. Appl Math Model. 2017;50:633-55. https://doi.org/10.1016/J.APM.2017.06.022.
  • 40. Akgoz B, Civalek O. A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 2015;226:2277-94. https://doi.org/10.1007/S00707-015-1308-4.
  • 41. Hung PT, Phung-Van P, Thai CH. A refined isogeometric plate analysis of porous metal foam microplates using modified strain gradient theory. Compos Struct. 2022;289:115467. https://doi.org/10.1016/J.COMPSTRUCT.2022.115467.
  • 42. Yang Z, Lu H, Sahmani S, Safaei B. Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Arch Civ Mech Eng. 2021;21:1-19. https://doi.org/10.1007/S43452-021-00264-W.
  • 43. Saberi L, Nahvi H. Vibration analysis of a nonlinear system with a nonlinear absorber under the primary and super-harmonic resonances. Int J Eng. 2014;27:499-508. https://doi.org/10.5829/idosi.ije.2014.27.03c.18.
  • 44. Malekzadeh P, Setoodeh AR, Shojaee M. Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method. Comput Methods Appl Mech Eng. 2018;340:451-79. https://doi.org/10.1016/j.cma.2018.06.006.
  • 45. Arshid E, Soleimani-Javid Z, Amir S, Duc ND. Higher-order hygro-magneto-electro-thermomechanical analysis of FG-GNPs-reinforced composite cylindrical shells embedded in PEM layers. Aerosp Sci Technol. 2022;126:107573. https://doi.org/10.1016/J.AST.2022.107573.
  • 46. Zenkour AM, Aljadani MH. Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates. Eur J Mech A/Solids. 2019;78:103835. https://doi.org/10.1016/j.euromechsol.2019.103835.
  • 47. Aditya Narayan D, Ben Zineb T, Polit O, Pradyumna B, Ganapathi M. Large amplitude free flexural vibrations of functionally graded graphene platelets reinforced porous composite curved beams using finite element based on trigonometric shear deformation theory. Int J Non Linear Mech. 2019;116:302-17. https://doi.org/10.1016/j.ijnonlinmec.2019.07.010.
  • 48. Ganapathi M, Merzouki T, Polit O. Vibration study of curved nanobeams based on nonlocal higher-order shear deformation theory using finite element approach. Compos Struct. 2018;184:821-38. https://doi.org/10.1016/j.compstruct.2017.10.066.
  • 49. Liu Z, Yang C, Gao W, Wu D, Li G. Nonlinear behaviour and stability of functionally graded porous arches with graphene platelets reinforcements. Int J Eng Sci. 2019;137:37-56. https://doi.org/10.1016/j.ijengsci.2018.12.003.
  • 50. Liu H, Wu H, Lyu Z. Nonlinear resonance of FG multilayer beam-type nanocomposites: effects of graphene nanoplatelet-reinforcement and geometric imperfection. Aerosp Sci Technol. 2020;98:105702. https://doi.org/10.1016/j.ast.2020.105702.
  • 51. Asgari GR, Arabali A, Babaei M, Asemi K. Dynamic instability of sandwich beams made of isotropic core and functionally graded graphene platelets-reinforced composite face sheets. Int J Struct Stab Dyn. 2022. https://doi.org/10.1142/S0219455422500924.
  • 52. Arshid E, Amir S, Loghman A. Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-composite layers. J Sandw Struct Mater. 2020. https://doi.org/10.1177/1099636220955027.
  • 53. Gao K, Gao W, Chen D, Yang J. Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Compos Struct. 2018;204:831-46. https://doi.org/10.1016/j.compstruct.2018.08.013.
  • 54. Arshid E, Amir S, Loghman A. Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates. Aerosp Sci Technol. 2021. https://doi.org/10.1016/j.ast.2021.106561.
  • 55. Kaddari M, Kaci A, Bousahla AA, Tounsi A, Bourada F, Tounsi A, Bedia EAA, Al-Osta MA. A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis. Comput Concr. 2020;25:37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  • 56. Li Q, Wu D, Gao W, Tin-Loi F, Liu Z, Cheng J. Static bending and free vibration of organic solar cell resting on Winkler-Pasternak elastic foundation through the modified strain gradient theory. Eur J Mech A/Solids. 2019;78:103852. https://doi.org/10.1016/j.euromechsol.2019.103852.
  • 57. Zhao J, Xie F, Wang A, Shuai C, Tang J, Wang Q. Dynamics analysis of functionally graded porous (FGP) circular, annular and sector plates with general elastic restraints. Compos Part B Eng. 2019;159:20-43. https://doi.org/10.1016/j.compositesb.2018.08.114.
  • 58. Hebali H, Boulefrakh L, Chikh A, Bousahla AA, Tounsi A, Mahmoud SR. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate. Geomech Eng. 2019;18:161-78. https://doi.org/10.12989/GAE.2019.18.2.161.
  • 59. Amari A, Hassan ZK, Al-Bahrani M, Saberi L, Maktoof MAJ. Practical parameter tuning toward enhancing thermomechanical shock resistance of the nanocomposite structure. Mech Adv Mater Struct. 2022. https://doi.org/10.1080/15376494.2022.2145531.
  • 60. Yang W, He D. Free vibration and buckling analyses of a size-dependent axially functionally graded beam incorporating transverse shear deformation. Results Phys. 2017;7:3251-63. https://doi.org/10.1016/j.rinp.2017.08.028.
  • 61. Vera SA, Sanchez MD, Laura PAA, Vega DA. Transverse vibrations of circular, annular plates with several combinations of boundary conditions. J Sound Vib. 1998;213:757-62.
  • 62. Singh B, Chakraverty S. Transverse vibration of annular circular and elliptic plates using the characteristic orthogonal polynomials in two dimensions. J Sound Vib. 1993;162:537-46.
  • 63. Selmane A, Lakis AA. Natural frequencies of transverse vibrations of non-uniform circular and annular plates. J Sound Vib. 1999;220:225-49.
  • 64. Ke LL, Yang J, Kitipornchai S, Bradford MA. Bending, buckling and vibration of size-dependent functionally graded annular microplates. Compos Struct. 2012;94:3250-7. https://doi.org/10.1016/j.compstruct.2012.04.037.
  • 65. Arshid E, Amir S, Loghman A. Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT. Int J Mech Sci. 2020;180:105656. https://doi.org/10.1016/j.ijmecsci.2020.105656.
  • 66. Mao JJ, Lu HM, Zhang W, Lai SK. Vibrations of graphene nanoplatelet reinforced functionally gradient piezoelectric composite microplate based on nonlocal theory. Compos Struct. 2020;236:111813. https://doi.org/10.1016/J.COMPSTRUCT.2019.111813.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5cc9b61f-7a73-4861-9e54-6570408fcec5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.