Warianty tytułu
Badanie i projekt podwójnego trybu rezonansowego filtra środkowoprzepustowego z zawieszoną linią paskową podłoża dla komunikacji 5G
Języki publikacji
Abstrakty
In this paper, a compact dual-mode bandpass filter suspended stripline is presented. A square-shape resonator with four shorted ground posts was lied on substrate (Roger 5880, Er=2.2) in the middle of metallic cavity to operate at 5G mobile communications. The internal coupling was achieved by notching the resonator at the place 450 with respect to input and output ports, where the external capacitive coupling was realized by changing the length of input feeder. A 2nd and 4th order bandpass Chebyshev filter are designed and simulated to operate at resonant frequency is 4.8GHz and bandwidth is 100MHz. The simulation results show, the spurious window is about 1.844, the unloaded Q-factor was 1024, the insertion loss was 0.1 dB and the return loss is 17.6 dB.
W artykule przedstawiono zwartą linię paskową zawieszonego filtra pasmowego o dwóch trybach pracy. Na podłożu (Roger 5880, Er=2,2) w środku metalowej wnęki położono kwadratowy rezonator z czterema zwartymi słupkami uziemienia, aby działał w komunikacji mobilnej 5G. Sprzężenie wewnętrzne uzyskano poprzez nacięcie rezonatora w miejscu 450 względem portów wejściowych i wyjściowych, gdzie zewnętrzne sprzężenie pojemnościowe zrealizowano poprzez zmianę długości podajnika wejściowego. Filtr Czebyszewa pasmowoprzepustowy drugiego i czwartego rzędu zaprojektowano i zasymulowano do pracy przy częstotliwości rezonansowej 4,8 GHz i szerokości pasma 100 MHz. Wyniki symulacji pokazują, że fałszywe okno wynosi około 1,844, nieobciążony współczynnik dobroci wynosił 1024, tłumienność wtrąceniowa wynosiła 0,1 dB, a tłumienność odbiciowa 17,6 dB.
Czasopismo
Rocznik
Tom
Strony
89--93
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Collage of Information Technology, Ninevah University
autor
- Electrical Engineering Departement, Collage of Engineering, University of Mosul
autor
- Communication Engineering Departement, Collage of Electronics Engineering, Ninevah University
autor
- Electronics Engineering Departement, Collage of Electronics Engineering, Ninevah University
Bibliografia
- [1] K. S. Mazur, D. D. Tatarchuk, Y. v Didenko, e A. O. Serheieva, “Filters Based of Segments of Microstrip Lines”, em 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO), 2018, p. 177–180.
- [2] Y. R. Denny et al., “Multi-Wideband Band Pass Filter Using Quad Cross-Stub Stepped Impedance Resonator”, J Comput Theor Nanosci, vol. 17, no 7, p. 3184–3189, 2020.
- [3] P. C. Chen, C. L. Pan, J. D. Huang, e S. H. Hong, “Design of an Ideal Low Pass Microstrip Line Filter Using the Defected Ground Structure”, em Applied Mechanics and Materials, 2018, vol. 876, p. 133–137.
- [4] Z. Gong, W. Ji, R. Yin, J. Li, e Z. Song, “Tunable microwave photonic filter based on LNOI polarization beam splitter and waveguide grating”, IEEE Photonics Technology Letters, vol. 32, no 13, p. 787–790, 2020.
- [5] L. Smadi, H. Sharif, e Y. S. Faouri, “Dual-band tunable microwave bandpass filter using stepped impedance technique”, em 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), 2019, p. 827–830.
- [6] D. Jiang, Y. Liu, X. Li, G. Wang, e Z. Zheng, “Tunable microwave bandpass filters with complementary split ring resonator and liquid crystal materials”, IEEE Access, vol. 7, p. 126265–126272, 2019.
- [7] J. Wang, L. Zhao, Z.-C. Hao, e T. J. Cui, “An ultra-thin coplanar waveguide filter based on the spoof surface plasmon polaritons”, Appl Phys Lett, vol. 113, no 7, p. 071101, 2018.
- [8] Y.-F. Chou Chau et al., “Ultrawide bandgap and high sensitivity of a plasmonic metal-insulator-metal waveguide filter with cavity and baffles”, Nanomaterials, vol. 10, no 10, p. 2030, 2020.
- [9] J. Chen, S. Zhang, C. Zhang, e Y. Li, “W-band dual-band waveguide band-pass filter using dual-mode cavities”, Electron Lett, vol. 54, no 25, p. 1444–1446, 2018.
- [10] S. W. O. Luhaib, “A Transmission Zero Position Control for 28 GHz Rectangular Waveguide Cavity Bandpass Filter”, Al-Rafidain Engineering Journal (AREJ), vol. 27, no 1, p. 81–89, 2022.
- [11] M. S. Bakr, S. W. O. Luhaib, I. C. Hunter, e W. Bosch, “Dualmode dual-band conductor-loaded dielectric resonator filters”, em 2017 47th European microwave conference (EuMC), 2017, p. 908–910.
- [12] M. Sarkar, “Sharp Rejection Wideband Band Pass Filter in Suspended Substrate Stripline Realization”, em 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), 2019, p. 1–6.
- [13] N. A. Wahab, M. K. M. Salleh, Z. I. Khan, e Z. Awang, “Dualband dual-mode bandpass filter using seriescoupled ring resonators”, em 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 2012, p. 191–194.
- [14] N. B. M. Najib, N. Somjit, e I. Hunter, “Design and characterisation of dual-mode suspended-substrate stripline filter”, IET Microwaves, Antennas & Propagation, vol. 12, no 9, p. 1526–1531, 2018.
- [15] L. Xia, B. Wu, J. zhong Chen, T. Su, e Q. S. Cheng, “A High-Q Miniaturized Suspended Stripline Resonator for Pseudoelliptic Filter Design”, IEEE Access, vol. 6, p. 64784–64789, 2018.
- [16] K. Dong, J. Mo, Y. He, Z. Ma, e X. Yang, “Design of a millimeter-wave dual-band bandpass filter using SIW dualmode cavities”, em 2016 IEEE MTT-S International Wireless Symposium (IWS), 2016, p. 1–3.
- [17] S. Saleh, W. Ismail, I. S. Z. Abidin, M. H. Jamaluddin, M. H. Bataineh, e A. S. Alzoubi, “5G hairpin bandpass filter”, Jordanian Journal of Computers and Information Technology, vol. 7, no 1, 2021.
- [18] T. Islam, L. Mohammed, e Z. Lahbib, “Design of microstrip Hairpin-Resonator filter for C-Band Application”, Int J Sci Eng Res, vol. 9, no 8, p. 20–23, 2018.
- [19] J.-S. G. Hong e M. J. Lancaster, Microstrip filters for RF/microwave applications, Second. John Wiley & Sons, 2004.
- [20] N. Ismail, T. S. Gunawan, T. Praludi, e E. A. Hamidi, “Design of microstrip hairpin bandpass filter for 2.9 GHz–3.1 GHz s-band radar with defected ground structure”, Malaysian Journal of Fundamental and Applied Sciences, vol. 14, no 4, p. 448–455, 2018.
- [21] E. Fathi, F. Setoudeh, e M. B. Tavakoli, “Design and fabrication of a novel multilayer bandpass filter with high-order harmonics suppression using parallel coupled microstrip filter”, ETRI Journal, vol. 44, no 2, p. 260–273, 2022.
- [22] S. W. Sattler et al., “Embedded Suspended Stripline Substrate Technology (ESSS) as a Catalyst for Low-loss PCB Structures in the Ka-Band”, em 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2019, p. 154–156.
- [23] Z. Yu, L. Xu, e C. Liu, “Design of a Suspended Stripline Dual-Band Band-Stop Filter Loaded With Short-Ended Waveguide Stubs Embedded in the Metal Housing”, IEEE Microwave and Wireless Components Letters, vol. 30, no 11, p. 1025–1028, 2020.
- [24] M. H. Ho e P. F. Chen, “Suspended substrate stripline bandpass filters with source-load coupling structure using lumped and full-wave mixed approach”, Progress in Electromagnetics Research, vol. 122, p. 519–535, 2012, doi: 10.2528/PIER11102502.
- [25] M. Assaf, A. Malki, e A. A. Sarhan, “Synthesis and Design of MMR-Based Ultra-Wideband (UWB) Band Pass Filter (BPF) in Suspended Stripline (SSL) Technology”, Progress In Electromagnetics Research Letters, vol. 84, p. 123–130, 2019.
- [26] J. Sun, D. Zhang, Q. Liu, e X. Wang, “Dual-mode dual-band substrate integrated waveguide bandpass filter with improving the spurious passband”, em 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2018, p. 1–3.
- [27] S. M. K. Azam, M. I. Ibrahimy, S. M. A. Motakabber, e A. K. M. Z. Hossain, “A compact bandpass filter using microstrip hairpinresonator for WLAN applications”, em 2018 7th International Conference on Computer and Communication Engineering (ICCCE), 2018, p. 313–316.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5caf11b7-ade3-4635-b088-67d70ecde57d