Warianty tytułu
Języki publikacji
Abstrakty
In the present paper, the notion of generalized (s, m)-preinvex Godunova-Levin function of second kind is introduced, and some new integral inequalities involving generalized (s, m)-preinvex Godunova-Levin functions of second kind along with beta function are given. By using a new identity for fractional integrals, some new estimates on generalizations of Hermite-Hadamard, Ostrowski and Simpson type inequalities for generalized (s, m)-preinvex Godunova-Levin functions of second kind via Riemann-Liouville fractional integral are established.
Czasopismo
Rocznik
Tom
Strony
211--221
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, Vlora, Albania, artionkashuri@gmail.com
autor
- Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, Vlora, Albania, rozanaliko86@gmail.com
Bibliografia
- [1] T. Antczak, Mean value in invexity analysis, Nonlinear Anal. 60 (2005), no. 8, 1473-1484.
- [2] P. S. Bullen, Handbook of Means and Their Inequalities, Math. Appl. 560, Kluwer Academic, Dordrecht, 2003.
- [3] S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones 34 (2015), no. 4, 323-341.
- [4] S. S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Armen. J. Math. 8 (2016), no. 1, 38-57.
- [5] S. S. Dragomir, J. Pečarić and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), no. 3, 335-341.
- [6] T.-S. Du, J.-G. Liao and Y.-J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl. 9 (2016), no. 5, 3112-3126.
- [7] E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, in: Numerical Mathematics and Mathematical Physics (in Russian), Moskov. Gos. Ped. Inst., Moscow (1985), 138-142, 166.
- [8] H. Kavurmaci, M. Avci and M. E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequal. Appl. 2011 (2011), Paper No. 86.
- [9] M. Li, J. Wang and W. Wei, Some fractional Hermite-Hadamard inequalities for convex and Godunova-Levin functions, Facta Univ. Ser. Math. Inform. 30 (2015), no. 2, 195-208.
- [10] W. Liu, New integral inequalities involving beta function via P-convexity, Miskolc Math. Notes 15 (2014), no. 2, 585-591.
- [11] W. Liu, Some Simpson type inequalities for h-convex and (α, m)-convex functions, J. Comput. Anal. Appl. 16 (2014), no. 5, 1005-1012.
- [12] W. Liu, Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes 16 (2015), no. 1, 249-256.
- [13] W. Liu, W. Wen and J. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl. 9 (2016), no. 3, 766-777.
- [14] D. S. Mitrinović and J. E. Pečarić, Note on a class of functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 1, 33-36.
- [15] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Math. Appl. (East European Series) 61, Kluwer Academic, Dordrecht, 1993.
- [16] M. A. Noor, K. I. Noor and M. U. Awan, Fractional Ostrowski inequalities for (s, m)-Godunova-Levin functions, Facta Univ. Ser. Math. Inform. 30 (2015), no. 4, 489-499.
- [17] M. A. Noor, K. I. Noor, M. U. Awan and S. Khan, Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions, Appl. Math. Inf. Sci. 8 (2014), no. 6, 2865-2872.
- [18] M. E. Özdemir, E. Set and M. Alomari, Integral inequalities via several kinds of convexity, Creat. Math. Inform. 20 (2011), no. 1, 62-73.
- [19] R. Pini, Invexity and generalized convexity, Optimization 22 (1991), no. 4, 513-525.
- [20] F. Qi and B.-Y. Xi, Some integral inequalities of Simpson type for GA-ε-convex functions, Georgian Math. J. 20 (2013), no. 4, 775-788.
- [21] D. D. Stancu, G. Coman and P. Blaga, Numerical Analysis and Approximation Theory. Vol. II (in Romanian), Presa Universitară Clujeană, Cluj-Napoca, 2002.
- [22] M. Tunç, Ostrowski type inequalities for functions whose derivatives are MT-convex, J. Comput. Anal. Appl. 17 (2014), no. 4, 691-696.
- [23] X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl. 117 (2003), no. 3, 607-625.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5c7cb6a8-0cf8-45cf-84ae-7598e4c3481b