Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | nr 11 | 16--28
Tytuł artykułu

Zakłócenia incydentalne w łańcuchu dostaw — analiza ripple effect w świetle badań literaturowych

Autorzy
Treść / Zawartość
Warianty tytułu
EN
Incidental disruption in the supply chain — a ripple effect analysis in the light of literature research
Języki publikacji
PL
Abstrakty
PL
Zakłócenia incydentalne, szczególnie takie, które wcześniej nie występowały, a ich prawdopodobieństwo w kontekście negatywnego wpływu było niewielkie, od kilku lat stanowią rzeczywistość gospodarczą. Konsekwencje zakłóceń oddziałują na funkcjonowanie podmiotów zlokalizowanych w najodleglejszych częściach globu, a zmieniające się źródła niepewności wymagają podejmowania działań, które pozwolą na budowę bardziej odpornych systemów. Zidentyfikowany ripple effect, definiowany jako nieprzewidywalne skalowanie jednoczesnego rozprzestrzeniania się zakłóceń w łańcuchach dostaw poprzez jego wiele szczebli, coraz częściej stanowi skutek występujących globalnych zagrożeń. W artykule zaprezentowano analizę bibliometryczną dotyczącą zagadnień związanych z łańcuchem dostaw, najczęściej identyfikowanych w ostatnich latach kryzysów i ich konsekwencji w postaci ripple effect. Celem analizy było wskazanie, jak zmienia się zainteresowanie tematyką ripple effect w ostatnich latach w kontekście analizy łańcucha dostaw, co uwidacznia rosnąca liczba publikacji naukowych, autorów, poszerzony obszar oraz zakres analiz badawczych. Wykorzystanie ripple effect w badaniach nad łańcuchem dostaw jest stosunkowo nowym zjawiskiem, a prezentacja danych ilościowych jest nowym spojrzeniem na badaną tematykę, która jest trudna do zbadania innymi metodami.
EN
Incidental disruptions, especially those that were previously non-existent and unlikely in terms of their negative impact, have been an economic reality for several years. The consequences of disruptions affect the activities of entities located in the remotest parts of the globe, and changing sources of uncertainty require action to build more resilient systems. The identified ripple effect is increasingly a consequence of the global risks occurring. This paper presents a bibliometric analysis of supply chain issues, the most frequently identified crises in recent years and their ripple effect consequences. The aim of the analysis was to indicate how interest in the subject of the ripple effect has changed in recent years, in the context of supply chain analysis, as evidenced by the increasing number of scientific publications, authors, area and scope of research analysis. The use of the ripple effect in supply chain research is a relatively new phenomenon, and the presentation of quantitative data is a new insight into the topic under study, which is difficult to investigate by other methods.
Wydawca

Rocznik
Tom
Strony
16--28
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
Bibliografia
  • Anugerah, A. R., Muttaqin, P. S., & Trinarningsih, W. (2022). Social network analysis in business and management research: A bibliometric analysis of the research trend and performance from 2001 to 2020. Heliyon, e09270.
  • Broadus, R. N. (1987). Toward a definition of „bibliometrics”. Scientometrics, 12(5).
  • Cancino, C. A., Amirbagheri, K., Merigó, J. M., & Dessouky, Y. (2019). A bibliometric analysis of supply chain analytical techniques. Computers & Industrial Engineering, 137, 106015, https://doi.org/10.1016/j.cie.2019.106015
  • Cancino, C., Merigó, J. M., Coronado, F., Dessouky, Y., & Dessouky, M. (2017). Forty years of Computers & Industrial Engineering: A bibliometric analysis. Computers & Industrial Engineering, 113, 614–629, https://doi.org/10.1016/j.cie.2017.08.033
  • Caputo, A., Pizzi, S., Pellegrini, M. M., & Dabić, M. (2021). Digitalization and business models: Where are we going? A science map of the field. Journal of Business Research, 123, 489–501, https://doi.org/10.1016/j.jbusres.2020.09.053
  • Cobo, M. J., Martínez, M. Á., Gutiérrez-Salcedo, M., Fujita, H., & Herrera-Viedma, E. (2015). 25 years at knowledge-based systems: A bibliometric analysis. Knowledge-based systems, 80, 3–13, https://doi.org/10.1016/j.knosys.2014.12.035
  • Dhamija, P., & Bag, S. (2020). Role of artificial intelligence in operations environment: A review and bibliometric analysis. The TQM Journal, https://doi.org/10.1108/TQM-10-2019-0243
  • Dolgui, A., & Ivanov, D. (2021). Ripple effect and supply chain disruption management: New trends and research directions. International Journal of Production Research, 59(1), 102–109, https://doi.org/10.1080/00207543.2021.1840148
  • Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114, https://doi.org/10.1016/j.ijpe.2015.01.003
  • Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338–342, https://doi.org/10.1096/fj.07-9492LSF
  • Hashemi, H., Rajabi, R., & Brashear-Alejandro, T. G. (2022). COVID-19 research in management: An updated bibliometric analysis. Journal of Business Research, 149, 795–810. https://doi.org/10.1016/j.jbusres.2022.05.082
  • He, X., Wu, Y., Yu, D., & Merigó, J. M. (2017). Exploring the ordered weighted averaging operator knowledge domain: A bibliometric analysis. International Journal of Intelligent Systems, 32(11), 1151–1166, https://doi.org/10.1002/int.21894
  • Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National academy of Sciences, 102(46), 16569–16572, https://doi.org/10.1073/pnas.0507655102
  • Hirsch, J. E. (2010). An index to quantify an individual's scientific research output that takes into account the effect of multiple coauthorship. Scientometrics, 85(3), 741–754, https://doi.org/10.1007/s11192-010-0193-9
  • Hosseini, S., & Ivanov, D. (2020). Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review. Expert systems with applications, 161, 113649, https://doi.org/10.1016/j.eswa.2020.113649
  • Ivanov, D., & Dolgui, A. (2021). OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications. International Journal of Production Economics, 232, 107921, https://doi.org/10.1016/j.ijpe.2020.107921
  • Ivanov, D. (2019). Disruption tails and revival policies: A simulation analysis of supply chain design and production-ordering systems in the recovery and post-disruption periods. Computers & Industrial Engineering, 127, 558–570, https://doi.org/10.1016/j.cie.2018.10.043
  • Ivanov, D. (2018). Revealing interfaces of supply chain resilience and sustainability: A simulation study. International Journal of Production Research, 56(10), 3507–3523. https://doi.org/10.1080/00207543.2017.1343507
  • Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846, https://doi.org/10.1080/00207543.2018.1488086
  • Ivanov, D., Dolgui, A., & Sokolov, B. (Red.). (2019). Handbook of ripple effects in the supply chain. Springer.
  • Jamalnia, A., Gong, Y., & Govindan, K. (2022). Sub-supplier's sustainability management in multi-tier supply chains: A systematic literature review on the contingency variables, and a conceptual framework. International Journal of Production Economics, 108671. https://doi.org/10.1016/j.ijpe.2022.108671
  • Ji, B., Zhao, Y., Vymazal, J., Mander, Ü., Lust, R., & Tang, C. (2021). Mapping the field of constructed wetland-microbial fuel cell: A review and bibliometric analysis. Chemosphere, 262, 128366, https://doi.org/10.1016/j.chemosphere.2020.128366
  • Koberg, E., & Longoni, A. (2019). A systematic review of sustainable supply chain management in global supply chains. Journal of Cleaner Production, 207, 1084–1098, https://doi.org/10.1016/j.jclepro.2018.10.033
  • Laengle, S., Merigó, J. M., Miranda, J., Słowiński, R., Bomze, I., Borgonovo, E., ..., & Teunter, R. (2017). Forty years of the European Journal of Operational Research: A bibliometric overview. European Journal of Operational Research, 262(3), 803–816, https://doi.org/10.1016/j.ejor.2017.04.027
  • Li, Y., Chen, K., Collignon, S., & Ivanov, D. (2021). Ripple effect in the supply chain network: Forward and backward disruption propagation, network health and firm vulnerability. European Journal of Operational Research, 291(3), 1117–1131, https://doi.org/10.1016/j.ejor.2020.09.053
  • Li, Y., & Zobel, C. W. (2020). Exploring supply chain network resilience in the presence of the ripple effect. International Journal of Production Economics, 228, 107693. https://doi.org/10.1016/j.ijpe.2020.107693
  • Majiwala, H., & Kant, R. (2022). A bibliometric review of a decade'research on industry 4.0 & supply chain management. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.09.058
  • Malacina, I., & Teplov, R. (2022). Supply chain innovation research: A bibliometric network analysis and literature review. International Journal of Production Economics, 108540, https://doi.org/10.1016/j.ijpe.2022.108540
  • Martins, C. L., & Pato, M. V. (2019). Supply chain sustainability: A tertiary literature review. Journal of Cleaner Production, 225, 995–1016, https://doi.org/10.1016/j.jclepro.2019.03.250
  • Mingers, J., & Leydesdorff, L. (2015). A review of theory and practice in scientometrics. European Journal of Operational Research, 246(1), 1–19, https://doi.org/10.48550/arXiv.1501.05462
  • Mishra, D., Dwivedi, Y. K., Rana, N. P., & Hassini, E. (2021). Evolution of supply chain ripple effect: A bibliometric and metaanalytic view of the constructs. International Journal of Production Research, 59(1), 129–147, https://doi.org/10.1080/00207543.2019.1668073
  • Monostori, J. (2021). Mitigation of the ripple effect in supply chains: Balancing the aspects of robustness, complexity and efficiency. CIRP Journal of Manufacturing Science and Technology, 32, 370–381, https://doi.org/10.1016/j.cirpj.2021.01.013
  • Montecchi, M., Plangger, K., & West, D. C. (2021). Supply chain transparency: A bibliometric review and research agenda. International Journal of Production Economics, 238, 108152, https://doi.org/10.1016/j.cirpj.2021.01.013
  • Nimmy, S. F., Hussain, O. K., Chakrabortty, R. K., Hussain, F. K., & Saberi, M. (2022). Explainability in supply chain operational risk management: A systematic literature review. Knowledge-Based Systems, 235, 107587, https://doi.org/10.1016/J.KNOSYS.2021.107587
  • Perdana, T., Onggo, B. S., Sadeli, A. H., Chaerani, D., Achmad, A. L. H., Hermiatin, F. R., & Gong, Y. (2022). Food supply chain management in disaster events: A systematic literature review. International Journal of Disaster Risk Reduction, 103183, https://doi.org/10.1016/j.ijdrr.2022.103183.
  • Rinaldi, M., Murino, T., Gebennini, E., Morea, D., & Bottani, E. (2022). A literature review on quantitative models for supply chain risk management: Can they be applied to pandemic disruptions? Computers & Industrial Engineering, 108329, https://doi.org/10.1016/j.cie.2022.108329
  • Scheibe, K. P., & Blackhurst, J. (2018). Supply chain disruption propagation: A systemic risk and normal accident theory perspective. International Journal of Production Research, 56(1–2), 43–59, https://doi.org/10.1080/00207543.2017.1355123.
  • Seuring, S., & Gold, S. (2012). Conducting content-analysis based literature reviews in supply chain management. Supply Chain Management: An International Journal, 17(5), https://doi.org/10.1108/13598541211258609
  • Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699–1710, https://doi.org/10.1016/j.jclepro.2008.04.020
  • Simonetto, M., Sgarbossa, F., Battini, D., & Govindan, K. (2022). Closed loop supply chains 4.0: From risks to benefits through advanced technologies. A literature review and research agenda. International Journal of Production Economics, 108582, https://doi.org/10.1016/j.ijpe.2022.108582
  • Valenzuela, L. M., Merigó, J. M., Johnston, W. J., Nicolas, C., & Jaramillo, J. F. (2017). Thirty years of the Journal of Business & Industrial Marketing: A bibliometric analysis. Journal of Business & Industrial Marketing, https://doi.org/10.1108/JBIM-04-2016-0079
  • Wang, X., Tang, T., Su, S., Yin, J., Gao, Z., & Lv, N. (2021). An integrated energy-efficient train operation approach based on the space-time-speed network methodology. Transportation Research. Part E: Logistics and Transportation Review, 150, 102323., https://doi.org/10.1016/j.tre.2021.102323
  • Wang, X., Xu, Z., Su, S. F., & Zhou, W. (2021). A comprehensive bibliometric analysis of uncertain group decision making from 1980 to 2019. Information Sciences, 547, 328–353, https://doi.org/10.1016/j.ins.2020.08.036
  • Yilmaz, Ö. F., Özçelik, G., & Yeni, F. B. (2021). Ensuring sustainability in the reverse supply chain in case of the ripple effect: A two-stage stochastic optimization model. Journal of Cleaner Production, 282, 124548, https://doi.org/10.1016/j.jclepro.2020.124548
  • Yu, D., Xu, Z., & Šaparauskas, J. (2019). The evolution of „Technological and Economic Development of Economy”: A bibliometric analysis. Technological and Economic Development of Economy, 25(3), 369–385, https://doi.org/10.3846/tede.2019.10193
  • Zhang L., Ling J., Lin M. (2022). Artificial intelligence in renewable energy: A comprehensive bibliometric analysis. Energy Reports, 8, 14072–14088. https://doi.org/10.1016/j.egyr.2022.10.347
  • Zhang, K., & Liang, Q. M. (2020). Recent progress of cooperation on climate mitigation: A bibliometric analysis. Journal of Cleaner Production, 277, 123495, https://doi.org/10.1016/j.jclepro.2020.123495
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5c53778b-e515-4b20-af42-7f809ae9d5d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.