Czasopismo
2022
|
Vol. 22, no. 4
|
493--496
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In construction, textiles can be used either for reinforcing the structure or for finishing design. When we talk about function, the interior is no less important than the exterior and architecture of the building. Thus using textiles to reinforce the structure of buildings, textiles often perform a desired function of reinforcing the “finish.” Building textile materials include fibers that are mixed with concrete, fiberglass reinforcement meshes, insulators, etc. Textile architecture covers permanent tensile structures based on polyester or glass fiber fabrics, with polyvinyl chloride (PVC) or polytetrafluoroethylene (PTFE) coating and awnings generally supported by polyester or polyolefin fabrics, with or without coating, especially for gardening. All above topics are covered within this perspective with the experts from the group of smart textiles for building and living within COST Action CA17107 European Network to Connect Research and Innovation Efforts on Advanced Smart Textiles (CONTEXT) [1].
Czasopismo
Rocznik
Tom
Strony
493--496
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Industrial Design and Production Engineering Department, University of West Attica, 250 Thivon & P. Ralli Street, Egaleo Postal code 12241, Athens, Greece, gprin@uniwa.gr
autor
- InnoRenew CoE, Renewable Materials Composites Group, Livade 6, 6310 Izola, Slovenia
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, Kraków, Poland
- Faculty of Architecture, University of Belgrade, Bulevar Kralja Aleksandra 73/II, Belgrade, Serbia
autor
- Next Technology Tecnotessile Società Nazionale di Ricerca r.l., Via del Gelso 13, 59100 Prato, Italy
autor
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų Street 56, Kaunas, Lithuania
Bibliografia
- [1] A European Green Deal. Striving to be the first climate-neutral continent, A European Green Deal | European Commission (europa.eu).
- [2] El Hadi, H., Mansour, R., Priniotakis, G., Vassilliadis, S., Vasilakos, S., et al. (2018). Physico-chemical and mechanical characterization of jute fabrics for civil engineering applications. Journal of Computational Methods in Science and Engineering (JCMSE), 18, 129-147, doi: 10.3233/JCM-180776.
- [3] www.cost.eu. COST Action CA17107 European Network to Connect Research and Innovation Efforts on Advanced Smart Textiles (CONTEXT). Web site: http://www.context-cost. eu/overview/.
- [4] Ollenhauer, C. (2011). Textiles in architecture: materials suppliers for building and construction. Silsden: Textile Media Services, Textile Media Services, 206.
- [5] Echeverriaa, C. A., Pahlevani, F., Handoko, W., Jiangb, C. H., Doolan, C., et al. (2019). Engineered hybrid fibre reinforced composites for sound absorption building applications. Resources, Conservation & Recycling, 143(2019), 1-14.
- [6] World Green Building Council. Health, Wellbeing & Productivity in Offices (The next chapter for green building). Web site: https://www.worldgbc.org/sites/default/files/compressed_WorldGBC_Health_Wellbeing_Productivity_Full_Report_Dbl_Med_Res_Feb_2015.pdf
- [7] Szewczyk, P. K., Gradys, A., Kim, S. K., Persano, L., Marzec, M., et al. (2020). Enhanced Piezoelectricity of Electrospun Polyvinylidene fluoride fibers for energy harvesting. ACS Applied Materials & Interfaces, 12(11), 13575-13583.
- [8] Harstad, S., D’Souza, N., Soin, N., El-Gendy, A. A., Gupta, S., et al. (2017). Enhancement of b-phase in PVDF films embedded with ferromagnetic Gd5Si4 nanoparticles for piezoelectric energy harvesting. AIP Advances, 7, 056411.
- [9] Curbach, M., et al. (1999). Sachstandbericht zum Einsatz von Textilien im Massivbau, Kurzber. AUS Bauforsch, 40(1).
- [10] Brameshuber, M. (2006). Report 36: Textile Reinforced Concrete – State-of-the-Art Report of RILEM TC 201-TRC. RILEM Publications.
- [11] Brückner, A., Ortlepp, R., Curbach, M. (2006). Textile reinforced concrete for strengthening in bending and shear. Materials and Structures, 39, 741-748.
- [12] Taylor, J. R. E. (1986). Thermal Insulation of the down and Feathers of Pygoscelid Penguin Chicks and the Unique Properties of Penguin Feathers. Auk, 103(1), 160-168.
- [13] Cui, Y., Gong, H., Wang, Y., Li, D., Bai, H. (2018). A thermally insulating textile inspired by polar bear hair. Advanced Materials, 30(14), 1706807.
- [14] Simonis, P., Rattal, M., Oualim, E. M., Mouhse, A., Vigneron, J.-P. (2014). Radiative contribution to thermal conductance in animal furs and other woolly insulators. Optics Express, 22(2), 1941-1952.
- [15] Jia, H., Guo, J., Zhu, J. (2017). Comparison of the photo-thermal energy conversion behavior of polar bear hair and wool of sheep. Journal of Bionic Engineering, 14(4), 616-621.
- [16] Rouse, J. G., Van Dyke, M. E. (2010). A review of keratin-based biomaterials for biomedical applications. Materials, 3(2), 999-1014.
- [17] Bonser, R. H. C., Purslow, P. P. (1995). The youngs-modulus of feather keratin. Journal of Experimental Biology, 198(4), 1029-1033.
- [18] Gupta, H. S., Stachewicz, U., Wagermaier, W., Roschger, P., Wagner, H. D., et al. (2006). Mechanical modulation at the lamellar level in osteonal bone. Journal of Materials Research, 21(8), 1913-1921.
- [19] Bhushan, B., Jung, Y. C. (2011). Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science, 56(1), 1-108.
- [20] Huda, S., Yang, Y. (2009). Feather fiber reinforced light-weight composites with good acoustic properties. Journal of Polymers and the Environment, 17(2), 131-142.
- [21] Greenwold, M. J., Bao, W., Jarvis, E. D., Hu, H., Li, C., et al. (2014). Dynamic evolution of the alpha (alpha) and beta (beta) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evolutionary Biology, 14.
- [22] Metwally, S., Comesaña, S. M., Zarzyka, M., Szewczyk, P. K., Karbowniczek, J. E., et al. (2019). Thermal insulation design bioinspired by microstructure study of penguin feather and polar bear hair. Acta Biomaterialia, 91, 270-283.
- [23] Jia, H., Zhu, J., Li, Z., Cheng, X., Guo, J. (2017). Design and optimization of a photo-thermal energy conversion model based on polar bear hair. Solar Energy Materials and Solar Cells, 159, 345-351.
- [24] Liddell, T., Flore, I., Fontana, M., Romanova, N., Zamani, M. B., et al. (2019). Tension-actuated textiles for architectural applications. Proceedings of the TensiNet Symposium, 465-475. doi: 10.30448/ts2019.3245.20.
- [25] Textile Fasades, Textile facades | i-tensing | Textile architecture | IASO (iasoglobal.com).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5c5281bd-cfa2-479b-8a98-67f23301f07f