Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 17, nr 1-2 | 301--304
Tytuł artykułu

Shell element simulation of the push method of tube bending

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this paper the new push bending process for the forming of curved tubes is simulated using the finite element method. It is demonstrated that the results obtained using shell elements compare closely with those obtained earlier using three-dimensional elements. A parametric study is carried out which gives on indication of the effect of changes in geometry and material properties on results. Design/methodology/approach: A non-linear finite element analysis is carried out using the program LS-DYNA. A bilinear elastic plastic material is assumed, and both aluminum and steel are modelled. Findings: It is found that the radius of the bend is significant with respect to potential wrinkling. The inner pressure can be increased to suppress possible wrinkling. Lubrication is shown to be significant with regard to final results for wall thickness. Research limitations/implications: The present work is restricted to quasi-static behavior, and thermal effects are not considered. Practical implications: Some limitation on thickness variation in the finished product is possible through choice of lubricant. Originality/value: This paper gives original simulated results for tube push bending relating to new geometries and different materials.
Wydawca

Rocznik
Strony
301--304
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
autor
  • Department of Mechanical Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada, dredekop@uottawa.ca
Bibliografia
  • [1] Y.S. Zeng, Z.Q. Li, Experimental research on the tube push-bending process, Journal of Materials Processing Technology 122 (2002) 237-240.
  • [2] S. Baudin, P. Ray, B.J. Mac Donald, M.S.J. Hashmib, Development of a novel method of tube bending using finite element simulation, Journal of Materials Processing Technology 153–154 (2004) 128-133.
  • [3] H.A. Al-Qureshi, Elastic-plastic analysis of tube bending, International Journal of Machine Tools & Manufacture 39 (1999) 87-104.
  • [4] Z. Hu, J.Q. Li, Computer simulation of pipe-bending processes with small bending radius using local induction heating, Journal of Materials Processing Technology 91 (1999) 75-79.
  • [5] J.B. Yang, B.H. Jeon, S.I. Oh, the tube bending technology of a hydroforming process for an automotive part, Journal of Materials Processing Technology 111 (2001) 175-181.
  • [6] S.J. Yuan, B.G. Teng, Z.R. Wang, A new hydroforming process for large elbow pipes, Journal of Materials Processing Technology 117 (2001) 28-31.
  • [7] M. Zhan, H. Yang, Z.Q. Jiang, Z.S. Zhao, Y. Lin, A study on a 3D FE simulation of the NC bending process of thin-walled tube, Journal of Materials Processing Technology 129 (2002) 273-276.
  • [8] N. Hao, L. Li, Finite element analysis of laser tube bending process, Applied Surface Science 208-209 (2003) 437-441.
  • [9] L. Gao, M. Strano, FEM analysis of tube pre-bending and hydroforming, Journal of Materials Processing Technology 151 (2004) 294-297.
  • [10] H.S. Hsieh, J.M. Lin, Study of the buckling mechanism in laser tube forming, Optics & Laster Technology 37 (2005) 402-409.
  • [11] M. Goodarzi, T. Kuboki, M. Murata, Deformation analysis for the shear bending process of circular tubes, Journal of Materials Processing Technology 162-163 (2005) 492-497.
  • [12] Z.R. Wang, G. Liu, S.J. Yuan, B.G. Teng, Z.B. He, Progress in shell hydroforming, Journal of Materials Processing Technology 167 (2005) 230-236.
  • [13] H.K. Lee, C.J. Van Tyne, D. Field, Finite element bending analysis of oval tubes using rotary draw bender for hydroforming applications, Journal of Materials Processing Technology 168 (2005) 327-335.
  • [14] LS-DYNA Theoretical Manual. Livermore Software Technology Corporation, 1998.
  • [15] W. Johnson, P.B. Mellor, Engineering Plasticity, Wiley & Sons, New York, 1983.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5c3d330c-a6ef-48d2-8b8b-6eba469f9c51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.