Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 73, nr 3 | 763--777
Tytuł artykułu

Hydrogen fuel cell power supply for hybrid electric multiple unit train

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In European countries, electrified routes amount for 40% to 65% of the total railway networks length. Some of those routes are only partially electrified, and construction of a catenary network might not be viable on all routes. Consequently, operators run diesel trains under catenary or require both an electric and diesel vehicle, increasing costs of operation. Dual-mode vehicles exist, but they are mostly equipped with diesel generators, adding to the pollution and resulting in reduced movement dynamics. In this article, the authors present a hydrogen-hybrid electric multiple unit (HEMU), as an environmentally friendly vehicle for partially electrified railway lines. Insight into technologies utilized by both hybrid and hydrogen rail vehicles based on the literature review allowed for the formulation of requirements for such a vehicle. Furthermore, an approach to a modelling hybrid vehicle is described, including an energy management algorithm. A series of simulations were conducted, showing an operation of an HEMU on a partially electrified suburban/regional route. The presented simulation results show potential for the future introduction of hydrogen hybrid electric multiple units as a viable solution for partially electrified local and regional routes.
Wydawca

Rocznik
Strony
763--777
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr., wz.
Twórcy
  • Faculty of Electrical and Control Engineering, Gdansk University of Technology, Gabriela Narutowicza str., 11/12, 80-233 Gdańsk, Poland, aleksander.jakubowski@pg.edu.pl
  • Faculty of Electrical and Control Engineering, Gdansk University of Technology, Gabriela Narutowicza str., 11/12, 80-233 Gdańsk, Poland, dariusz.karkosinski@pg.edu.pl
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gabriela Narutowicza str., 11/12, 80-233 Gdańsk, Poland, natalia.brzozowska@pg.edu.pl
Bibliografia
  • [1] Amelia D., Witteman N.T., Zimmermann U., Emissionsfreie Mobilität – eine Strategie für den Einsatz von batterieelektrischen Triebzügen und Ladeinfrastruktur in Deutschlands Schienenpersonennahverkehr, Verband der Deutsche Bahnindustrie (2021).
  • [2] El-Sayed Al-Tony F., Lashine A., Cost-benefit analysis of railway electrification: case study for Cairo-Alexandria railway line, Impact Assessment and Project Appraisal, vol. 18, no. 4, pp. 323–333 (2012), DOI: 10.3152/147154600781767312.
  • [3] Dolinayová A., Dömény I., Abramović B., Šipuš D., Electrified and non-electrified railway infrastructure – economic efficiency of rail vehicle change, Transportation Research Procedia, vol. 74, pp. 93–100 (2023), DOI: 10.1016/j.trpro.2023.11.117.
  • [4] Study on the use of fuel cells & hydrogen in the railway environment, report 2: Analysis of boundary conditions for potential hydrogen rail applications of selected case studies in Europe [online], https://shift2rail.org/wp-content/uploads/2019/04/Report-2.pdf, accessed April 2019.
  • [5] Shiraki N., Tokito K., Yokozutsumi R., Propulsion system for catenary and storage battery hybrid electric railcar series EV-E301, International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), Aachen, Germany, pp. 1–7 (2015), DOI: 10.1109/ESARS.2015.7101511.
  • [6] Mwambeleko J.J., Kulworawanichpong T., Battery and Accelerating-Catenary Hybrid System for Light Rail Vehicles and Trams, 5th International Electrical Engineering Congress, Pattaya, Thailand, pp. 1–4 (2017), DOI: 10.1109/IEECON.2017.8075778.
  • [7] Meng X., Li Q., Huang T., Wang X., Zhang G., Chen W., A Distributed Performance Consensus Control Strategy of Multistack PEMFC Generation System for Hydrogen EMU Trains, IEEE Transactions on Industrial Electronics, vol. 68, no. 9, pp. 8207–8218 (2021), DOI: 10.1109/TIE.2020.3016243.
  • [8] Wang H., Gaillard A., Li Z., Roche R., Hissel D., Multiple-Fuel Cell Module Architecture Investigation: A Key to High Efficiency in Heavy-Duty Electric Transportation, IEEE Vehicular Technology Magazine, vol. 17, no. 3, pp. 94–103 (2022), DOI: 10.1109/MVT.2022.3179801.
  • [9] Tsukahara K., Kondo K., A Study on Methods to Design and Select Energy Storage Devices for Fuel Cell Hybrid Powered Railway Vehicles, 39th Annual Conference of the IEEE Industrial Electronics Society IECON 2013, Vienna, Austria, pp. 4534–4539 (2013), DOI: 10.1109/IECON.2013.6699866.
  • [10] Jindo S., Matsunaga K., Kondo K., Sizing the Energy Source and Battery for Electrical Driven Railway Vehicles for Non-electrified Lines, 2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Venice, Italy, pp. 1–6 (2023), DOI: 10.1109/ESARS-ITEC57127.2023.10114823.
  • [11] Tian B., Xiang H., Zhang L., Li Z., Wang H., Niobium doped lithium titanate as a high rate anode material for Li-ion batteries, Electrochimica Acta, vol. 55, pp. 5453–5458 (2010), DOI: 10.1016/j.electacta.2010.04.068.
  • [12] Barbosa F.C., Fuel cell rail technology review – a tool for an autonomous rail electrifying strategy, Proceedings of the 2019 Joint Rail Conference JRC2019, Snowbird, USA (2019), DOI: 10.1115/JRC2019- 1223.
  • [13] Berzi L., Cirillo F., Pagliazzi V., Pugi L., Vecchi A., Design and Simulation Tools for Hybrid Fuel Cell Trains, 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Bari, Italy, pp. 1–6 (2021), DOI: 10.1109/EEEIC/ICPSEurope51590.2021.9584749.
  • [14] Ogawa K., Yamamoto T., Hasegawa H., Furuya T., Development of the Fuel-cell/Battery Hybrid Railway Vehicle, 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, USA, pp. 1730–1735 (2009), DOI: 10.1109/VPPC.2009.5289693.
  • [15] Din T., Hillmansen S., Energy consumption and carbon dioxide emissions analysis for a concept design of a hydrogen hybrid railway vehicle, IET Electrical Systems in Transportation, vol. 8, iss. 2, pp. 112–121 (2018), DOI: 10.1049/iet-est.2017.0049.
  • [16] Kühlkamp F., Herwartz S., D1.1 – Report concerning line and use-case based requirements, FCH2RAIL project results, Work Package 1, Deliverable 1.1 [online], https://verkehrsforschung.dlr.de/public/ previews/FCH2RAIL_Deliverable_1.1_submitted.pdf, accessed February 2022.
  • [17] Herwartz S., Kühlkamp F., Pagenkopf J., Del Re F., Varela M., Carrillo Dominguez A.M., Roma Ganhão F.M., Bi-Mode Hydrogen Train Requirements Using Geospatial Line Assessment, World Congress on Railway Research (WCRR), Birmingham, UK (2022).
  • [18] Saito T., Kondo K., Koseki T., Hisatomi K., Mizuma T., Frequency Domain Based Power Controller of Energy Storage Device for a Hybrid Traction System in a DC-electrified Railway, 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion, Bologna, Italy, pp. 1–3 (2012), DOI: 10.1109/ESARS.2012.6387400.
  • [19] Zhang Y., Tian Z., Roberts C., Hillmansen S., Chen M., Cost optimization of multi-mode train conversion for discontinuously electrified routes, International Journal of Electrical Power & Energy Systems, vol. 138 (2022), DOI: 10.1016/j.ijepes.2022.107993.
  • [20] IEEE Guide for the Calculation of Braking Distances for Rail Transit Vehicles, IEEE Vehicular Technology Society (VTS), New York, USA (2009), DOI: 10.1109/IEEESTD.2009.5332051.
  • [21] Peng H., Li J., Löwenstein L., Hameyer K., A scalable, causal, adaptive energy management strategy based on optimal control theory for a fuel cell hybrid railway vehicle, Applied Energy, vol. 267 (2020), DOI: 10.1016/j.apenergy.2020.114987.
  • [22] Deng K., Peng H., Dirkes S., Gottschalk J., Ünlübayir C., Thul A., Löwenstein L., Pischinger S., Hameyer K., An adaptive PMP-based model predictive energy management strategy for fuel cell hybrid railway vehicles, eTransportation, vol. 7 (2021), DOI: 10.1016/j.etran.2020.100094.
  • [23] Xu N., Kong Y., Chu L., Ju H., Yang Z., Xu Z., Xu Z., Towards a smarter energy management system for hybrid vehicles: a comprehensive review of control strategies, Applied Sciences, vol. 9, no. 10 (2019), DOI: 10.3390/app9102026.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5c046e89-91f2-4a58-b046-4ee19aa4165e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.