Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Nr 3 (121) | 53-93
Tytuł artykułu

Sztuczne włókna mineralne, z wyjątkiem ogniotrwałych włókien ceramicznych – frakcja wdychalna. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Man-made mineral fibres, with the exception of refractory ceramic fibres - inhalable fraction Documentation of proposed values of occupational exposure limits (OELs)
Języki publikacji
PL
Abstrakty
PL
Sztuczne włókna szkliste (man-made vitreous fibers - MMVF; sztuczne włókna mineralne, man-made mineral fibers – MMMF), wprowadzono na szeroką skalę jako zamienniki azbestu. Są to nieorganiczne materiały włókniste produkowane ze szkła, skał, minerałów, żużla i przetworzonych tlenków nieorganicznych. Dane o narażeniu zawodowym w Polsce na MMVF dotyczą tylko ekspozycji na włókna respirabilne, a żadna z narażonych osób nie pracowała w stężeniach przekraczających wartość NDS (1 włókno/cm3). O toksyczności MMVF decyduje długość włókien, ich średnica i biotrwałość. Sztuczne włókna szkliste o większej średnicy i długości działają drażniąco na skórę, oczy i drogi oddechowe. Włókna respirabilne dochodzące do płuc powodują stany zapalne, zwłóknienia, zmiany proliferacyjne. Badania epidemiologiczne nie wykazały jednoznacznie zależności między rakiem płuca a narażeniem na MMVF. Zmianom takim może sprzyjać palenie tytoniu. Po narażeniu inhalacyjnym zwierząt zdolności organizmu do oczyszczania płuc są znaczne. Najczęściej notowane w Polsce średnie stężenia włókien respirabilnych na stanowiskach pracy wynosiły około 0,106 wł./cm3 , a frakcji wdychalnej (pyłów całkowitych) – 3,27 mg/m3. Obecnie przy braku wartości NDS dla frakcji wdychalnej MMVF można je zaliczyć do „pyłów nieklasyfikowanych ze względu na toksyczność - frakcji wdychalnej”, dla których NDS wynosi 10 mg/m3 (Rozporządzenie Ministra Pracy 2018). Po analizie dostępnych danych zaproponowano przyjąć NDS dla frakcji wdychalnej o połowę niższą od wartości dla pyłów niesklasyfikowanych ze względu na toksyczność, czyli 5 mg/m3. Brakuje podstaw do wyznaczenia wartości NDSCh, NDSP i DSB. Działanie drażniące wymaga oznakowania „I”, a z uwagi na trudne do interpretacji dane epidemiologiczne dotyczące ewentualnego działania rakotwórczego proponuje się dodać oznakowanie „Carc. 2” (substancja, którą podejrzewa się, że powoduje raka).
EN
Man-made vitreous fibres (MMVFs; man-made mineral fibres (MMMFs)), have been introduced as replacements for asbestos. These are inorganic fibre materials produced from glass, rocks, minerals, slag and processed inorganic oxides. Data on occupational exposure to MMVF in Poland relate only to exposure to respirable fibres, and none of the exposed persons worked at concentrations exceeding the MAC (1 fibre/cm3 ). The toxicity of MMVF is determined by fibre length, diameter and biopersistence. Artificial vitreous fibres of greater diameter and length are irritating to the skin, eyes and respiratory tract. Respirable fibres reaching the lungs, cause inflammation, fibrosis and proliferative changes. Epidemiological studies have not conclusively demonstrated a relationship between lung cancer and MMVF exposure (changes may be favoured by smoking). Following inhalation exposure of animals, the lung-clearing capacity of the organism is considerable. The most frequently recorded concentrations of respirable fibres at workplaces in Poland were about 0.106 fibre/cm3 , and the inhalable fraction (total dust) - 3.27 mg/m3 . In the absence of an MAC value for the inhalable fraction of MMFV, they can be categorised as „dust not classified for toxicity”, for which the MAC is 10 mg/mv . After analysing the available data, it was proposed for the inhalable fraction half the value of the MAC for dust not classified for toxicity, i.e. 5 mg/m3 . There is no basis for determination the values of the STEL, TLV-C and BEI. Irritant activity requires an „I” label and to add the label „Carc. 2” (substance suspected of causing cancer).
Wydawca

Rocznik
Strony
53-93
Opis fizyczny
Bibliogr. 165 poz., rys., tab.
Twórcy
  • Uniwersytet Medyczny w Łodzi, Katedra i Zakład Toksykologii, ul. J. Muszyńskiego 1, 90-151 Łódź
  • Uniwersytet Medyczny w Łodzi, Katedra i Zakład Toksykologii, ul. J. Muszyńskiego 1, 90-151 Łódź
Bibliografia
  • 1. ACGIH, American Conference of Governmental Industrial Hygienists (2001). Synthetic vitreous fibers. Supplement to documentation of the threshold limit values and biological exposure indices. Cincinnati, OH.
  • 2. ACGIH, American Conference of Governmental Industrial Hygienists (2022). Threshold limit values for chemical substances in the work environment. Adapted by ACGIH with intended changes.
  • 3. Adachi S., Takemoto K., Kimura K. (1991). Tumorigenicity of fine man-made fibers after intratracheal administrations to hamsters. Environ. Res. 54(1), 52-73 [cyt. za: IARC 2002; Toxicological profile… 2004].
  • 4. AIOH, Australian Institute of Occupational Hygienists (2018). Synthetic mineral fibres (SMF) and occupational health issues. Association number: A0017462L.
  • 5. Albin M., Engholm G., Hallin N. i in. (1998). Impact of exposure to insulation wool on lung function and cough in Swedish construction workers. Occup. Environ. Med. 55, 661–667 [cyt. za: Kupczewska-Dobecka i in. 2019; Toxicological profile… 2004].
  • 6. Bernstein D.M. (2007). Synthetic vitreous fibers: a review toxicology, epidemiology and regulations. Crit. Rev. Toxicol. 37, 839-886.
  • 7. Bernstein D.M., Riego Sintes J.M., Ersboell B.K. i in. (2001a). Biopersistence of synthetic mineral fibers as a predictor of chronic inhalation toxicity in rats. Inhal. Toxicol. 13(10), 823-849.
  • 8. Bernstein D.M., Riego Sintes J.M., Ersboell B.K. i in. (2001b). Biopersistence of synthetic mineral fibers as a predictor of chronic intraperitoneal injection tumor response in rats. Inhal. Toxicol. 13(10), 851-875.
  • 9. Björnberg A. (1985). Glass fiber dermatitis. Am. J. Ind. Med. 8, 395-400.
  • 10. Boffetta P., Saracci R., Andersen A. i in. (1992). Lung cancer mortality among workers in the European production of man-made mineral fibers: a poisson regression analysis. Scand. J. Work Environ. Health 18(5), 279-286.
  • 11. Boffetta P., Saracci R., Andersen A. i in. (1997). Cancer mortality among man-made vitreous fibre production workers. Epidemiology 8(3), 259-268.
  • 12. Boffetta P., Andersen A., Hansen J. i in. (1999). Cancer incidence among European man-made vitreous fiber production workers. Scand. J. Work Environ. Health 25(3), 222-226.
  • 13. Boffetta P., Donaldson K., Moolgavkar S. i in. (2014). A systematic review of occupational exposure to synthetic vitreous fibers and mesothelioma. Crit. Rev. Toxicol. 44, 436-449.
  • 14. Brown R.C., Chamberlain M., Davies R. i in. (1979). In vitro biological effects of glass fibers. J. Environ. Pathol. Toxicol. 2(6), 1369–1383 [cyt. za: EHC 1988; Toxicological profile… 2004].
  • 15. Brown N., Peat J., Mellis C. i in. (1996). Respiratory health of workers in the Australian glass wool and rock wool manufacturing industry. J. Occup. Health Saf. Aust. NZ 12, 319–325 [cyt. za: IARC 2002].
  • 16. Bruchajzer E., Szymańska J., Frydrych B. (2024). Sztuczne włókna mineralne, z wyjątkiem ogniotrwałych włókien ceramicznych - włókna respirabilne. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego. Podst. Met. Oceny Srodow. Pr. 2(120), 5-74.
  • 17. Carel R., Olsson A.C., Zaridze D. i in. (2007). Occupational exposure to asbestos and man-made vitreous fibres and risk of lung cancer: a multicentre case-control study in Europe. Occup. Environ. Med. 64(8), 502-508.
  • 18. CIOP-PIB, Centralny Instytut Ochrony Pracy – Państwowy Instytyt Badawczy (2018). Przemysł sztucznych włókien mineralnych, http://www.ciop.pl/25882.html [dostęp: 15.01.2019], [cyt. za: Kupczewska-Dobecka i in. 2019].
  • 19. Claude J., Frentzel-Beyme R.R. (1986). Mortality of workers in a German rock-wool factory: a second look with extended follow-up. Scand. J. Work Environ. Health 12(Suppl. 1), 53-60.
  • 20. Clausen J., Netterstrøm B., Wolff C. (1993). Lung function in insulation workers. Br. J. Ind. Med. 50, 252–256 [cyt. za: IARC 2002; Toxicological profile… 2004].
  • 21. Dai Y.T., Yu C.P. (1998). Alveolar deposition of fibers in rodents and humans. J. Aerosol. Med. 11(4), 247–258 [cyt. za: Hartwig, MAK Commission 2019; IARC 2002; Toxicological profile… 2004].
  • 22. De Vuyst P., Dumortier P., Swaen G.M.H. i in. (1995). Respiratory health effects of man-made vitreous (mineral) fibres. Eur. Respir. J. 8(12), 2149–2173 [cyt. za: Kupczewska- -Dobecka i in. 2019].
  • 23. DECOS, Dutch Expert Committee on Occupational Standards (1995). Man-made mineral fibers. Health-based recommended Occupational Exposure Limits. Publ. No. 1995/O2WGD. The Hague: Health Council of the Netherlands [cyt. za: SCOEL 2012]
  • 24. Dopp E., Schiffmann D. (1998). Analysis of chromosomal alteration induced by asbestos and ceramic fibers. Toxicol. Lett. 96, 155–162 [cyt. za: Hartwig, MAK Commission 2019; IARC 2002; Toxicological profile… 2004].
  • 25. Driscoll K.E. (1996). Effects of fibres on cell proliferation, cell activation and gene expression. IARC Sci. Publ. 140, 73-96 [cyt. za: IARC 2002]
  • 26. Eastes W., Potter R.M., Hadley J.G. (2000). Estimating in vitro glass fiber dissolution rate from composition. Inhal. Toxicol. 12(4), 269-280.
  • 27. EHC (1988). Environmental Health Criteria 77. Man-made mineral fibres. IPCS (International Programme on Chemical Safety), World Health Organization, Geneva, 1988.
  • 28. Engholm G., Englund A., Fletcher T. i in. (1987). Respiratory cancer incidence in Swedish construction workers exposed to man-made mineral fibres and asbestos. Ann. Occup. Hyg. 31(4B), 663-675.
  • 29. Enterline P.E., Henderson V. (1975). The health of retired fibrous glass workers. Arch. Environ. Health 30, 113–116 [cyt. za: EHC 1988; Toxicological profile… 2004].
  • 30. Enterline P.E., Marsh G.M., Esmen N.A. (1983). Respiratory disease among workers exposed to man-made mineral fibers. Am. Rev. Respir. Dis. 128(1), 1-7.
  • 31. Enterline P.E., Marsh G.M., Henderson V. i in. (1987). Mortality update of a cohort of U.S. man-made mineral fibre workers. Ann. Occup. Hyg. 31(4B), 625-656.
  • 32. Ernst P., Shapiro S., Dales R.E. i in. (1987). Determinants of respiratory symptoms in insulation workers exposed to asbestos and synthetic mineral fibres. Br. J. Ind. Med. 44, 90–95 [cyt. za: EHC 1988].
  • 33. Esmen N., Corn M., Hammad Y. i in. (1979a). Summary of measurements of employee exposure to airborne dust and fiber in sixteen facilities producing man-made mineral fibers. Am. Ind. Hyg. Assoc. J. 40, 108-117.
  • 34. Esmen N.A., Corn M., Hammad Y.Y. i in. (1979b). Exposure of employees to man-made mineral fibers: ceramic fiber production. Environ. Res. 19, 265–278 [cyt. za: Kupczewska- -Dobecka i in. 2019; Toxicological profile… 2004]
  • 35. Esmen N.A., Erdal S. (1990). Human occupational and nonoccupational exposure to fibers. Environ. Health Perspect. 88, 277–286 [cyt. za: Toxicological profile… 2004].
  • 36. Finnegan M.J., Pickering C.A.C., Burge P.S. i in. (1985). Occupational asthma in a fibre glass works. J. Soc. Occup. Med. 35, 121-127 [cyt. za: EHC 1988].
  • 37. Fireman E. (2014). Man-made mineral fibers and interstitial lung diseases. Curr. Opin. Pulm. Med. 20, 194-198.
  • 38. Fisher A.A. (1982). Fiberglass vs mineral wool (rockwool) dermatitis. Cutis 29, 412-513 [cyt. za: Toxicological profile… 2004].
  • 39. Fisher B.K., Warkentin J.D. (1969). Fiber glass dermatitis. Arch. Dermatol. 99, 717-719.
  • 40. Gao H.G., Whong W.Z., Jones W.G. i in. (1995). Morphological transformation induced by glass fibers in BALB/c-3T3 cells. Teratog. Carcinog. Mutagen. 15(2), 63-71 [cyt. za: IARC 2002; Toxicological profile… 2004].
  • 41. Gardner J.M., Magnani C., Pannett B. i in. (1988). Lung cancer among glass fibre production workers: a case-control study. Br. J. Ind. Med. 45(9), 613-618.
  • 42. Gross P., Stanton M.F. (1973). Tumors of the pleura induced with asbestos and fibrous glass. J. Natl. Cancer Inst. 51(1), 315- 319 [cyt. za: Toxicological profile… 2004].
  • 43. Guida F., Paget-Bailly S., Lamkarkach F. i in. (2013). Risk of lung cancer associated with occupational exposure to mineral wools: updating knowledge from a French population-based case-control study, the ICARE study. J. Occup. Environ. Med. 55(7), 786-795.
  • 44. Gustavsson P., Plato N., Axelson O. i in. (1992). Lung cancer risk among workers exposed to man-made mineral fibers (MMMF) in the Swedish prefabricated house industry. Am. J. Ind. Med. 21(6), 825-834.
  • 45. Hallin N. (1981). Mineral wool dust in construction sites (Report 1981-09-01), Stockholm, Bygghälsan [The Construction Industry’s Organization for Working Environment, Safety and Health] [cyt. za: IARC 2002].
  • 46. Hansen E.F., Rasmussen F.V., Hardt F. i in. (1999). Lung function and respiratory health of long-term fiber-exposed stonewool factory workers. Am. J. Respir. Crit. Care Med. 160, 466-472.
  • 47. Hartwig A., MAK Commission (2019). Fibrous dusts, inorganic. MAK value documentation. MAK Coll. Occup. Health Saf. 4(4), 2054-2107.
  • 48. Head I.W.H., Wagg R.M. (1980). A survey of occupational exposure to man-made mineral fibre dust. Ann. Occup. Hyg. 23, 235–258 [cyt. za: IARC 2002]
  • 49. Hesterberg T.W., Barrett J.C. (1984). Dependence of asbestos and mineral dust-induced transformation of mammalian cells in culture on fiber dimension. Cancer Res. 44, 2170–2180 [cyt. za: EHC 1988; IARC 2002; RoC 2016; Toxicological profile… 2004].
  • 50. Hesterberg T.W., Hart G.A. (1994). A comparison of human exposures to fiberglass with those used in a recent rat chronic inhalation study. Regul. Toxicol. Pharmacol. 20(3 Pt 2), S35- S46 (abstract).
  • 51. Hesterberg T.W., Hart G.A. (2001). Synthetic vitrous fibers: a review of toxicology research and its impact on hazard classification. Crit. Rev. Toxicol 31(1), 1-53.
  • 52. Hesterberg T.W., Oshimura M., Barrett J.C. (1985). [W:] In vitro effects of mineral dusts: Third International Workshop. [Red.] E.G. Beck, J. Bignon Berlin: Springer-Verlag, 185–196 [cyt. za: Toxicological profile… 2004].
  • 53. Hesterberg T.W., Miiller W.C., McConnell E.E. i in. (1993). Chronic inhalation toxicity of size-separated glass fibers in Fischer 344 rats. Fundam. Appl. Toxicol. 20, 464-476.
  • 54. Hesterberg T.W., Miiller W.C., Mast R. i in. (1994). Relationship between lung biopersistence and biological effects of man-made vitreous fibers after chronic inhalation in rats. Environ. Health Perspect. 102 (Suppl. 5), 133-137.
  • 55. Hesterberg T.W., McConnell E.E., Miiller W.C. i in. (1996a). Use of lung toxicity and lung particle clearance to estimate the maximum tolerated dose (MTD) for a fibre glass chronic inhalation study in the rat. Fundam. Appl. Toxicol. 32, 31-44.
  • 56. Hesterberg T.W., Miiller W.C., Musselman R.P. i in. (1996b). Biopersistence of man-made vitreous fibers and crocidolite asbestos in the rat lung following inhalation. Fundam. Appl. Toxicol. 29, 267-279 [cyt. za: IARC 2002; Toxicological profile… 2004].
  • 57. Hesterberg T.W., Axten C., McConnell E.E. i in. (1997). Chronic inhalation study of fiber glass and amosite asbestos in hamsters: twelve-month preliminary results. Environ. Health Perspect. 105(Suppl. 5), 1223-1229.
  • 58. Hesterberg T.W., Hart G.A., Chevalier J. i in. (1998). The importance of fiber biopersistence and lung dose in determining the chronic inhalation effects of X607, RCF1, and chrysotile asbestos in rats. Toxicol. Appl. Pharmacol. 153, 68-82 [cyt. za: IARC 2002; SCOEL 2012; Toxicological profile… 2004].
  • 59. Hesterberg T.W., Axten C., McConell E.E. i in. (1999). Studies on the inhalation toxicology of two fiber-glasses and amosite asbestos in the Syrian golden hamster: Part I. Results of a subchronic study and dose selection for a chronic study. Inhal. Toxicol. 11(9), 747-784.
  • 60. Hill J.W., Whitehead W.S., Cameron J.D. i in. (1973). Glass fibres: absence of pulmonary hazard in production workers. Br. J. Ind. Med. 30, 174-179 [cyt. za: EHC 1988; Toxicological profile… 2004].
  • 61. Hours M., Févotte J., Lafont S. i in. (2007). Cancer mortality in a synthetic spinning plant in Besançon, France. Occup. Environ. Med. 64, 575-581.
  • 62. Hughes J.M., Jones R.N., Glindmeyer H.W. i in. (1993). Follow up study of workers exposed to man-made mineral fibres. Br. J. Ind. Med. 50, 658-667 [cyt. za: IARC 2002; Toxicological profile… 2004].
  • 63. IARC, International Agency for Research on Cancer (1988). Man-made mineral fibres and radon. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 43. WHO.
  • 64. IARC, International Agency for Research on Cancer (2002). Man-made vitreous fibres. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 81, WHO.
  • 65. IARC Expert Panel (1996). Congress report. [W:] Mechanisms of fibre carcinogenesis. [Red.] A.B. Kane, P. Boffetta, R. Saracci i in. IARC Sci. Publ. 140, 1-9.
  • 66. Jaffrey T.S.A.M., Rood A.P., Llewellyn J.W. i in. (1990). Levels of airborne man-made mineral fibres in UK dwellings: II. Fibre levels during and after some disturbance of loft insulation. Atmosph. Environ. 24A, 143-146.
  • 67. Jones A.D. (1993). Respirable industrial fibres: deposition, clearance and dissolution in animal models. Ann. Occup. Hyg. 37(2), 211-226.
  • 68. Kamstrup O., Davis J.M.G., Ellehauge A., Guldberg M. (1998). The biopersistence and pathogenicity of man-made vitreous fibers after short- and long-term inhalation. Ann. Occup. Hyg. 42(3), 191-199
  • 69. Kamstrump O., Ellenhauge A., Chevalier J. i in. (2001). Chronic inhalation studies of two types of stone wool fibres in rats. Inhal. Toxicol. 13, 603-621.
  • 70. Kane A.B. (1996). Mechanisms of mineral fibre carcinogenesis. [W:] Mechanisms of fibre carcinogenesis. [Red.] A.B. Kane, P. Bofetta, R. Saracci i in. IARC Sci. Publ. 11–34 [cyt. za: Toxicological profile… 2004].
  • 71. Kieć-Świerczyńska M., Szymczak W. (1995). The effect of the working environment on occupational skin disease development in workers processing rockwool. Int. J. Occup. Med. Environ. Health 8(1), 17-22 [cyt. za: IARC 2002; Kupczewska-Dobecka i in. 2019; Toxicological profile… 2004].
  • 72. Koh D., Aw T.C., Foulds I.S. (1992). Fiberglass dermatitis from printed circuit boards. Am. J. Ind. Med. 21, 193-198.
  • 73. Koshi K., Kohyama N., K. Myojo T. i in. (1991). Cell toxicity, hemolytic action and clastogenic activity of asbestos and its substitutes. Ind. Health 29(2), 37-56 [cyt. za: Toxicological profile… 2004].
  • 74. Krajewski J., Tarkowski S. (2002). Materiały izolacyjne zawierające sztuczne włókna mineralne - zagrożenia. Bezp. Pr. 3, 16-20 [cyt. za: Kupczewska-Dobecka i in. 2020].
  • 75. Kupczewska-Dobecka M., Czerczak S., Konieczko K. (2019). Wełna mineralna. Zagrożenia dla użytkowników, stan prawny i zasady bezpiecznego postępowania. IMP, Łódź.
  • 76. Kupczewska-Dobecka M., Konieczko K., Czerczak S. (2020). Occupational risk resulting from exposure to mineral wool when installing insulation in buildings. Int. J. Occup. Med. Environ. Health 33(6), 757-769.
  • 77. Leanderson P., Söderkvist P., Tagesson C. i in. (1988). Formation of 8-hydroxydeoxyguanosine by asbestos and man-made mineral fibres. Br. J. Ind. Med. 45, 309–311 [cyt. za: Toxicological profile… 2004].
  • 78. Lecomte C., Andujar P., Renier A. i in. (2005). Similar tumor suppressor gene alteration profiles in asbestos-induced murine and human mesothelioma. Cell Cycle 4, 1862-1869.
  • 79. LeBouffant L., Henin J.P., Martin J.C. i in. (1984). Distribution of inhaled MMMF in the rat lung–long-term effects. In: Biological effects of man-made mineral fibres (Proceedings of a WHO/IARC Conference), Vol. 2, Copenhagen, World Health Organization, pp. 143–167 [cyt. za: EHC 1988; IARC 2002].
  • 80. Lee K.P., Barras C.E., Griffith F.D. i in. (1979). Pulmonary response to glass fiber by inhalation exposure. Lab. Invest. 40(2), 123-133 [cyt. za: EHC 1988; Toxicological profile… 2004].
  • 81. Less P.S.J., Breysse P.N., McArthur B.R. i in. (1993). End user exposures to man-made vitreous fibers: I. Installations of residential insulation products. Appl. Occup. Environ. Hyg. 8, 1022–1030 [cyt. za: Kupczewska-Dobecka i in. 2019].
  • 82. Lippmann M. (1990). Effects of fiber characteristics on lung deposition, retention, and disease. Environ. Health Perspect. 88, 311–317
  • 83. Lipworth L., La Vecchia C., Bosetti C. i in. (2009). Occupational exposure to rock wool and glass wool and risk of cancers of the lung and the head and neck: a systematic review and meta-analysis. J. Occup. Environ. Med. 51(9), 1075-1087.
  • 84. Lundgren L., Moberg C., Lidén C. (2014). Do insulation products of man-made vitreous fibres still cause skin discomfort? Contact Dermatitis 70, 351-360.
  • 85. Maltoni C., Minardi F. (1989). Recent results of carcinogenicity bioassays of fibers and other particulate materials. [W:] Nonoccupational exposure to mineral fibres. [Red.] J. Bignon, J. Peto, R. Saracci. IARC Sci. Publ. 90, Lyon, 46-53 [cyt. za: IARC 2002].
  • 86. Marchant G.E., Amen M.A., Bullock C.H. i in. (2002). A synthetic vitreous fiber (SVF) occupational exposure database: implemanting the SVF health and Safety Partnership Program. Appl. Occup. Environ. Hyg. 17, 276-285 [cyt. za: Kupczewska- -Dobecka i in. 2019; Toxicological profile… 2004].
  • 87. Margineanu M., Danulescu E., Gradinariu F. i in. (2012). Irritative respiratory simptoms and ventilatory function to workers exposed to man-made mineral fibres. European Respiratory Society Annual Congres, 1-5 September 2012, Vienna, Austria.
  • 88. Marsh G.M., Enterline P.E., Stone R.A. i in. (1990). Mortality among a cohort of US man-made mineral fiber workers: 1985 follow-up. J. Occup. Environ. Med. 32, 594-604 [cyt. za: Bernstein 2007; Fireman 2014; IARC 2002; Toxicological profile… 2004].
  • 89. Marsh G.M., Youk A.O., Stone R.A. i in. (2001a). Historical cohort study of US man-made vitreous fiber production workers: I. 1992 fiberglass cohort follow-up: initial findings. J. Occup. Environ. Med. 43(9), 741-756.
  • 90. Marsh G.M., Gula M.J., Youk A.O. i in. (2001b). Historical cohort study of US man-made vitreous fiber production workers: II. Mortality from mesothelioma. J. Occup. Environ. Med. 43(9), 757-766.
  • 91. Marsh G.M., Buchanich J.M., Youk A.O. (2001c). Historical cohort study of US man-made vitreous fiber production workers: VI. Respiratory system cancer standardized mortality ratios adjusted for the confounding effect of cigarette smoking. J. Occup. Environ. Med. 43(9), 803-808.
  • 92. Marsh G.M., Buchanich J.M., Youk A.O. (2011). Fiber glass exposure and human respiratory system cancer risk: lack of evidence persists since 2001 IARC re-evaluation. Regul. Toxicol. Pharmacol. 60(1), 84-92.
  • 93. Maxim L.D., Mast R.W., Utell M.J. i in. (1999). Hazard assessment and risk analysis of two new synthetic vitreous fibers. Regul.Toxicol. Pharmacol. 30, 54-74.
  • 94. Mazurkiewicz P. (2014). Regulacje w sprawie materiałów ogniotrwałych z włókien ceramicznych i przyszłość wysokotemperaturowych włókien izolacyjnych [The regulation of RCF and future options for high temperature insulating fibre]. Inż. Mat. Piece Przem. Kotły 5-6, 28-32
  • 95. McConnell E.E., Kamstrup O., Musselman R. i in. (1994). Chronic inhalation study of size-separated rock and slag wool insulation fibers in Fischer 344/N rats. Inhal. Toxicol. 6, 571-614 [cyt. za: IARC 2002; SCOEL 2012; Toxicological profile… 2004].
  • 96. McConnell E.E., Axten C., Hesterberg T.W. i in. (1999). Studies on the inhalation toxicology of two fiberglasses and amosite asbestos in the Syrian golden hamster: II. Results of chronic exposure. Inhal. Toxicol. 11(9), 785-835.
  • 97. Milby T.H., Wolf C.R. (1969). Respiratory tract irritation from fibrous glass inhalation. J. Occup. Med. 11(8), 409-410 [cyt. za: Toxicological profile… 2004].
  • 98. Miller B.G., Searl A., Davis J.M. i in. (1999). Influence of fibre length, dissolution and biopersistence on the production of mesothelioma in the rat peritoneal cavity. Ann. Occup. Hyg. 43(3), 155-166 [cyt. za: IARC 2002; RoC 2016; Toxicological profile… 2004].
  • 99. Mineral wools (glass, stone/slag, HT), (2013). Evaluation of health hazard and proposal of health-based quality criterion for ambient air. Environmental project No. 1515, Danish Ministry of the Environment, Environmental Protection Agency, Copenhagen, Denmark.
  • 100. Morgan A., Holmes A., Davison W. (1982). Clearance of sized glass fibres from the rat lung and their solubility in vivo. Ann. Occup. Hyg. 25(3), 317-331 [cyt. za: Toxicological profile… 2004].
  • 101. Morgan A., Collier C.G., Morris K.J. i in. (1993). A radioactive tracer technique to determine in vivo the number of fibers in the lungs of rats following their administration by intratracheal instillation. Environ. Res. 63(2), 182-190 [cyt. za: Toxicological profile… 2004].
  • 102. Moulin J.J., Mur J.M., Wild P. i in. (1986). Oral cavity and laryngeal cancers among man-made mineral fiber production workers. Scand. J. Work Environ. Health 12(1), 27-31.
  • 103. Moulin J.J., Pham Q.T., Mur J.M. i in. (1987). [Epidemiological study in two factories producing artificial mineral fibres: II. Respiratory symptoms and lung function.] Arch. Mal. Prof. 48, 7-16 [cyt. za: EHC 1988; IARC 2002; Kupczewska-Dobecka i in. 2019].
  • 104. Moulin J.J., Wild P., Mur J.M. i in. (1988). Respiratory health assessment by questionnaire of 2024 workers involved in man-made mineral fiber production. Int. Arch. Occup. Environ. Health 61, 171-178 [cyt. za: IARC 2002; Toxicological profile… 2004].
  • 105. Nasr A.N.M., Ditchenk T., Scholtens P.A. (1971). The prevalence of radiographic abnormalities in chests of fiber glass workers. J. Occup. Med. 13(8), 371–376 [cyt. za: EHC 1988; Toxicological profile… 2004]
  • 106. Oberdörster G. (1994). Respiratory tract dosimetry of particles: implications for setting of exposure concentrations and extrapolation modeling. Proceedings of an International Symposium: IPCS Joint Series No. 18, 83-110 [cyt. za: Toxicological profile… 2004].
  • 107. Oberdörster G. (2000). Determinants of the pathogenicity of man-made vitreous fibres (MMVF). Int. Arch. Occup. Environ. Health 73(Suppl.), S60-S68 [cyt. za: IARC 2002; Toxicological profile… 2004]
  • 108. Ong T., Lui Y., Zhong B.Z. i in. (1997). Induction of micronucleated and multinucleated cells by man-made fibers in vitro in mammalian cells. J. Toxicol. Environ. Health 50(4), 409–414 [cyt. za: Toxicological profile… 2004].
  • 109. OSHA, Occupational Safety and Health Administration (2017). 1915.1000 - Air contaminants. https://www.osha.gov/lawsregs/regulations/standardnumber/1915/1915.1000 [dostęp: 30.03.2022].
  • 110. OSHA, Occupational Safety and Health Administration (2021). Occupational Chemical Database. Mineral wool fiber. https:// www.osha.gov/chemicaldata/791 [dostęp: 30.03.2022].
  • 111. Peraud A., Riebe-Imre M. (1994). Toxic and chromosomal damaging effects of natural and man-made mineral fibers in epithelial lung cells in vitro. [W:] Toxic and carcinogenic effects of solid particles in the respiratory tract. [Red.] D.L. Dungworth, J.L. Mauderly, G. Oberdorster. Washington, DC: ILSI Press, 569-574 [cyt. za: Toxicological profile… 2004].
  • 112. Petersen R., Sabroe S. (1991). Irritative symptoms and exposure to mineral wool. Am. J. Ind. Med. 20(1), 113-122 [cyt. za: IARC 2002; Toxicological profile… 2004].
  • 113. Pickrell J.A., Hill J.O., Carpenter R.L. i in. (1983). In vitro and in vivo response after exposure to man-made mineral and asbestos insulation fibers. Am. Ind. Hyg. Assoc. J. 44(8), 557– 561 [cyt. za: EHC 1988; Toxicological profile… 2004].
  • 114. Plato N., Krantz S., Gustavsson P. i in. (1995a). Fiber exposure assessment in the Swedish rock wool and slag wool production industry in 1938-1990. Scand. J. Work Environ. Health 21, 345-352.
  • 115. Plato N., Westerholm P., Gustavsson P. i in. (1995b). Cancer incidence, mortality and exposure-response among Swedish man-made vitreous fiber production workers. Scand. J. Work Environ. Health 21, 353–361.
  • 116. Possick P.A., Gellin G.A., Key M.M. (1970). Fibrous glass dermatitis. Am. Ind. Hyg. Assoc. J. 31, 12-15 [cyt. za: EHC 1988; Toxicological profile… 2004].
  • 117. Pott F. (1995). Detection of mineral fibre carcinogenicity with the intraperitoneal test: recent results and their validity. Ann. Occup. Hyg. 39(5), 771-779 [cyt. za: IARC 2002; Toxicological profile… 2004].
  • 118. Pott F., Friedrichs K.H., Huth F. (1976). [Results of animal experiments concerning the carcinogenic effect of fibrous dusts and their interpretation with regard to the carcinogenesis in humans]. Zentralbl. Bakteriol. Orig. B 162(5-6), 467-505 [cyt. za: IARC 2002; RoC 2016; Toxicological profile… 2004].
  • 119. Pott F., Ziem U., Reiffer F.J. i in. (1987). Carcinogenicity studies on fibres, metal compounds, and some other dusts in rats. Exp.
  • 120. Pathol. 32(3), 129-152 [cyt. za: ARC 2002; EHC 1988; RoC 2016; Toxicological profile… 2004].
  • 121. Pott F., Roller M., Althoff G.H. i in. (1993). [Estimation of the carcinogenicity of inhaled fibres]. VDI Berichte 1075, 17-77 [cyt. za: IARC 2002].
  • 123. Pott F., Dungworth D.L., Heinrich U. i in. (1994). Lung tumours in rats after intratracheal instillation of dusts. Ann. Occup. Hyg. 38, 357–363 [cyt. za: IARC 2002; Toxicological profile… 2004].
  • 124. RoC, Report on Carcinogens (2016). Certain glass wool fibers (inhalable), 14th ed. http://ntp.niehs.nih.gov/go/roc [dostęp: 23.06.2021].
  • 125. Roller M., Pott F., Kamino K. i in. (1996). Results of current intraperitoneal carcinogenicity studies with mineral and vitreous fibres. Exp. Toxicol. Pathol. 48(1), 3-12.
  • 126. Roller M., Pott F. (1998). Carcinogenicity of man-made fibres in experimental animals and its relevance for classification of insulation wools. Eur. J. Oncol. 3, 231-239 [cyt. za: IARC 2002].
  • 127. Rozporządzenie Ministra Rodziny, Pracy i Polityki Społecznej z dnia 12 czerwca 2018 r. w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy. DzU 2018, poz. 1286 ze zm. Dz.U. 2020, poz. 61; DzU 2021, poz. 325.
  • 128. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1272/2008 z dnia 16 grudnia 2008 r. w sprawie klasyfikacji, oznakowania i pakowania substancji i mieszanin, zmieniające i uchylające dyrektywy 67/548/EWG i 1999/45/WE oraz zmieniające rozporządzenie (WE) nr 1907/2006. Dz. Urz. UE L 353 z dnia 31.12.2008 r.
  • 129. Sali D., Boffetta P., Andersen A. i in. (1999). Non-neoplastic mortality of European workers who produce man made vitreous fibers. Occup. Environ. Med. 56, 612–617.
  • 130. Saracci R., Simonato L., Acheson E.D. i in. (1984). Mortality and incidence of cancer of workers in the man-made vitreous fibres producing industry: an international investigation at 13 European plants. Br. J. Ind. Med. 41, 425-436.
  • 131. Schneider T. (1984). Review of surveys in industries that use MMMF. [W:] Biological effects of man-made mineral fibres (Proceedings of a WHO/IARC Conference), Vol. 1, Copenhagen, World Health Organization, 178-190 [cyt. za: IARC 2002].
  • 132. Schneider T. (1987). Mass concentration of airborne man-made mineral fibres. Ann. Occup. Hyg. 31(2), 211–217
  • 133. Schneider T., Stokholm J. (1981). Accumulation of fibers in the eyes of workers handling man-made mineral fiber products. Scan. J. Work Environ. Health 7, 271-276.
  • 134. Schneider T., Breum N.O. (1987). Screening man-made vitreous fibre exposures by gravimetric dust measurements. Ann. Occup. Hyg. 31(4B), 547-555
  • 135. Schwartz L., Botvinick (1943). Skin hazards in the manufacture of glass wool and tread. Ind. Med. Surg. 12, 142-145 [cyt. za: Fisher, Warkentin 1969].
  • 136. SCOEL (2012). Recommendation from the Scientific Committee on Occupational Exposure Limits for man-made mineral fibres (MMMF) with no indication for carcinogenicity and not specified elsewhere. SCOEL/SUM/88, March 2012.
  • 137. Shannon H.S., Hayes M., Julian J.A. i in. (1984). Mortality experience of glass fibre workers. Br. J. Ind. Med. 41, 35-38.
  • 138. Shannon H.S., Jamieson E., Julian J.A. i in. (1987). Mortality experience of Ontario glass fibre workers: extended follow-up. Ann. Occup. Hyg. 31(4B), 657-662.
  • 139. Shannon H.S., Jamieson E., Julian J.A. i in. (1990). Mortality of glass filament (textile) workers. Br. J. Ind. Med. 47(8), 533– 536
  • 140. Shannon H., Muir A., Haines T. i in. (2005). Mortality and cancer incidence in Ontario glass fiber workers. Occup. Med. (Lond.) 55(7), 528-534.
  • 141. Shepers G.W.H. (1955). The biological action of glass wool: studies on experimental pulmonary histopatology. AMA Arch. Ind. Health 12, 280-287 [cyt. za: EHC 1988].
  • 142. Shepers G.W.H., Delahant A.B. (1955). An experimental study of the effects of glass wool on animal lungs. AMA Arch. Ind. Health 12, 276-279 [cyt. za: EHC 1988].
  • 143. Simonato L., Fletcher A.C., Cherrie J. i in. (1986). Updating lung cancer mortality among a cohort of man-made mineral fibre production workers in seven European countries. Cancer Lett. 30(2), 189-200
  • 144. Simonato L., Fletcher A.C., Cherrie J. i in. (1987). The International Agency for Research on Cancer historical cohort study of MMMF production workers in seven European countries: extension of the follow-up. Ann. Occup. Hyg. 31(4B), 603-623
  • 145. Sincock A.M., Delhanty J.D.A., Casey G. (1982). A comparison of the cytogenetic response to asbestos and glass fibre in Chinese hamster and human cell lines: demonstration of growth inhibition in primary human fibroblasts. Mutat. Res. 101(3), 257-268 [cyt. za: Toxicological profile… 2004].
  • 146. Smith D.M., Ortiz L.W., Archuleta R.F. (1984). Long-term exposure of Syrian hamsters and Osborne-Kendel rats to acrosolized 0.45 µm mean diameter fibrous glass. [W:] Biological effects of man-made mineral fibres. Proceedings of a WHO/IARC Conference, Copenhagen, Denmark, 20-22 April 1982, Copenhagen, World Health Organization, Regional Office for Europe, Vol. 2, 253-272 [cyt. za: EHC 1988].
  • 147. Smith D., Ortiz L.W., Archuleta R.F. i in. (1987). Long-term health effects in hamsters and rats exposed chronically to man-made vitreous fibres. Ann. Occup. Hyg. 31(4B), 731-754
  • 148. Sprawozdanie z badań (2018). Pobór i analiza próbek powietrza w środowisku pracy. Laboratorium Badań Środowiskowych EmiPro Sp. z o.o., Kraków, nr 18/P/18 z 7.12.2018 r. [cyt. za: Kupczewska-Dobecka i in. 2019].
  • 149. Stokholm J., Norn M., Schneider T. (1982). Ophthalmologic effects of man-made mineral fibers. Scand. J. Work Environ. Health 8, 185-190
  • 150. Stone R.A., Youk A.O., Marsh G.M. i in. (2001). Historical cohort study of US man-made vitreous fiber production workers: IV. Quantitative exposure-response analysis of the nested case-control study of respiratory system cancer. J. Occup. Environ. Med. 43, 779-792
  • 151. Stone R.A., Youk A.O., Marsh G.M. i in. (2004). Historical cohort study of U.S. man-made vitreous fiber production workers IX: summary of 1992 mortality follow up and analysis of respiratory system cancer among female workers. J. Occup. Environ. Med. 46, 55-67.
  • 152. Suder Egnot N., Benson S.M., Vater M.F. i in. (2020). Systematic review and meta-analysis of epidemiological literature evaluating the association between exposure to man-made vitreous fibers and respiratory tract cancers. Regul. Toxicol. Pharmacol. 112, 104585.
  • 153. Sulzberger M.B., Baer R.L. (1942). The effects of fiberglass on animal and human skin. Ind. Med. Surg. 11, 482–484 [cyt. za: Fisher, Warkentin 1969].
  • 154. SWA (2020). Safety Work Australia. Synthetic mineral fibres.
  • 155. Tarkowski S., Więcek E., Woźniak H. i in. (2001). Środowiskowe zagrożenia zdrowia. Sztuczne włókna mineralne występujące w materiałach izolacyjnych stosowanych w budownictwie. IMP, Łódź.
  • 156. Toxicological profile for synthetic vitreous fibers (2004). U.S. Department of Health and Human Services Public Health Service, Agency for Toxic Substances and Disease Registry (ATSDR).
  • 157. Utidijan H., Cooper W.C. (1976). Human epidemiologic studies with emphasis on chronic pulmonary effects. [W:] Occupational exposure to fibrous glass. Proceedings of a Symposium, College Park, Maryland, 26-27 June 1974, Washthgton DC, US Department of Health, Education and Welfare, 223-224 [cyt. za: EHC 1988].
  • 158. Wagner J.C., Berry G.B., Hill R.J. i in. (1984). Animal experiments with MMM(V)F: effects of inhalation and intrapleural inoculation in rats. [W:] Biological effects of man-made mineral fibres (Proceedings of a WHO/IARC Conference), Vol. 2, Copenhagen, World Health Organization, 209-233 [cyt. za: EHC 1988; IARC 2002; RoC 2016; SCOEL 2012].
  • 159. Wang Q.E., Han C.H., Yang Y.P. i in. (1999). Biological effects of man-made mineral fibers (II): their genetic damages examined by in vitro assay. Ind. Health 37(3), 342–347.
  • 160. WHO, World Health Organization (1997). Determination of airborne fibre number concentrations. A recommended method, by phase contrast optical microscopy. WHO, Geneva.
  • 161. Więcek E. (2011). Kryteria zdrowotne pobierania próbek aerozoli w środowisku pracy. Podst. Met. Oceny Srodow. Pr. 2(68), 5-21.
  • 162. Wright G.W. (1968). Airborne fibrous glass particles: chest roentgenograms of persons with prolonged exposure. Arch. Environ. Health 16, 175-181 [cyt. za: EHC 1988; Toxicological profile… 2004].
  • 163. Yano E., Karita K. (1998). Prevalence of respiratory abnormalities of workers in rock/slag wool producing industries in Japan. Advances in the Prevention of Occupational Respiratory Diseases: Proceedings of the 9th International Conference on Occupational Respiratory Diseases, Kyoto, 13-16 October 1997. [Red.] C. Keizo, H. Yutaka, A. Yoshiharu. Amsterdam, Elsevier, pp. 337–341 [cyt. za: IARC 2002].
  • 164. Youk A.O., Marsh G.M., Stone R.A. i in. (2001). Historical cohort study of US man-made vitreous fiber production workers: III. Analysis of exposure-weighted measures of respirable fibers and formaldehyde in the nested case-control study of respiratory system cancer. J. Occup. Environ. Med. 43(9), 767-778.
  • 165. Zhong B.Z., Ong T., Whong W.Z. (1997). Studies on the relationship between treatment condition and micronucleus induction in V79 cells exposed to silica and glass fibers. Mutat. Res. 39, 111-116 [cyt. za: Hartwig, MAK Commission 2019; Toxicological profile… 2004].
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5b946336-25e1-451f-afb2-9f7731e6035b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.