Warianty tytułu
Języki publikacji
Abstrakty
The characteristics of the air flow in a vertical channel, arising due to local internal heat release, are investigated by the method of numerical simulation. Heat is supplied to the flow from internal sources located in a limited volume closer to the inlet section of the channel. The problem of flow and heat transfer is described by a system of unsteady Navier-Stokes and energy equations for a compressible medium. The coefficients of viscosity and thermal conductivity are considered to be temperature dependent. From the numerical solution of this system, the velocity, pressure, and temperature fields in the channel are determined. Based on the results of the calculations, the regularities of the change in time of velocity and pressure in the channel are determined. From the analysis of the results it follows that from the moment the heat supply begins, a vertical air flow develops in the channel, which is accompanied by oscillations in velocity and pressure. Self-oscillations arising in a gas flow are a manifestation of instability of flow. It is shown that stable oscillations take place in the presence of additional local hydraulic resistance in the channel. The dependence of the amplitude and frequency of pressure oscillations and the air flow velocity on the power of the sources of internal heat release and the height of the channel has been investigated. It was determined that with an increase in the power of the source of internal heat supply and the height of the channel, the amplitudes of the velocity and pressure fluctuations increase.
Rocznik
Tom
Strony
106--116
Opis fizyczny
Bibliogr. 15 poz., rys., wykr., wzory
Twórcy
autor
- Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
autor
- Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine
autor
- Kielce University of Technology, Poland
Bibliografia
- [1] Raun R.L., Beckstead M.W., Finlinson J.C., Brooks K.P., A review of Rijke tubes, Rijke burners and related devices, Progress in Energy and Combustion Science, 1993, Vol. 19, pp. 313-364.
- [2] Shekhar M., Sarpotdar N., Ananthkrishnan, Sharma S.D., The Rijke Tube - A Thermo-Acoustic Device, Resonance, January 2003, pp. 59-71.
- [3] Entezam B., Van Moorhem W.K., Modeling of a Rijke - tube pulse combustor using computational fluid dynamics, American Institute of Aeronautics and Astronautics, 1997, Seattle, p. 15.
- [4] Matveev K.I., Thermo-acoustic instabilities in the Rijke tube: experiments and modeling, Ph.D. Thesis, Institute of Technology, California 2003, p. 161.
- [5] Molina Sandoval M.O., Nonlinear control of a thermoacoustic system with multiple heat sources and actuators, Dissertations and Theses, 2016, p. 62.
- [6] Xiaochuan Y., Ali T., Shenghui L., Thermoacoustic instability in a Rijke tube with a distributed heat source, Hindawi Publishing Corporation, Journal of Thermodynamics, 2015, p. 9.
- [7] Moeck J.P., Analysis, modeling and control of thermoacoustic instabilities, Technischen Universitat Berlin, 2010, p. 220.
- [8] Larinov V.M., Zaripov R.G., Avtokolebaniya gaza v ustanovkakh s goreniya, Izdatelsnvo Kazanskogo Gos. Tekhn. Unsversiteta, Kazan 2003, p. 227.
- [9] Basok B.I., Davydenko B.V., Gotsulenko V.V., Avtokolebaniya v trube Riyke pri raspolozhenii elektronagrevatelya neposredstvenno na yeye vkhode, Sibirskiy Zhurnal Industrial’noy Matematiki, 2013, 14, 2 (54), pp. 50-61.
- [10] Basok B.I., Gotsulenko V.V., Mekhanizmy teplogidrodinamicheskoy neustoychivosti pri lokal'nom podvode teploty k gazu, Dopovidi Natsyonalʹnoy Akademyy Nauk Ukrayiny, 2018, 3, pp. 69-79.
- [11] Basok B.I., Gotsulenko V.V., Raschet parametrov avtokolebaniy v vertikal'noy kamere goreniya vozdukhonagrevatelya domennoye pechi pri neustoychivom gorenii, Teploenergetika, 2015, 1, pp. 59-64.
- [12] Deshmukh Nilaj N., Sharma S.D., Experiments on heat content inside a Rijke tube with suppression of thermoacoustics instability, International Journal of Spray and Combustion Dynamics, 2017, 9(2), pp. 85-101.
- [13] Basok B.I., Gotsulenko V.V., Termogidrodinamicheskaya neustoychivost’ potoka teplonositelya, Kiev 2015, p. 412.
- [14] Peyret R., Teylor T.D., Computational Methods for Fluid Flow, Springer-Verlag, New York 1983, p. 358.
- [15] Davydenko B.V., Metod matrichnoy progonki dlya resheniya setochnykh uravneniy gidrodinamiki, Vostochno-Yevropeyskiy Zhurnal Peredovykh Tekhnologiy, 2008, 5 (35), pp. 7-11.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5b68e546-b0ff-4f6b-8d35-1c047cb023aa