Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 1 | 135--145
Tytuł artykułu

Blockchain-Enabled Transfer Learning for vulnerability detection and mitigation in maritime Logistics

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the increasing demand for efficient maritime logistic management, industries are striving to develop automation software. However, collecting data for analytics from diverse sources like shipping routes, weather conditions, historical incidents, and cargo specifications has become a challenging task in the distribution environment. This challenge gives rise to the possibility of faulty products and traditional testing techniques fall short of achieving optimal performance. To address this issue, we propose a novel decentralised software system based on Transfer Learning and blockchain technology named as BETL (Blockchain -Enabled Transfer Learning). Our proposed system aims to automatically detect and prevent vulnerabilities in maritime operational data by harnessing the power of transfer learning and smart contract-driven blockchain. The vulnerability detection process is automated and does not rely on manually written rules. We introduce a non-vulnerability score range map for the effective classification of operational factors. Additionally, to ensure efficient storage over the blockchain, we integrate an InterPlanetary File System (IPFS). To demonstrate the effectiveness of transfer learning and blockchain integration for secure logistic management, we conduct a testbed-based experiment. The results show that this approach can achieve high precision (98.00%), detection rate (98.98%), accuracy (97.90%), and F-score (98.98), which highlights its benefits in enhancing the safety and reliability of maritime logistics processes. Additionally, the computational time of BETL (the proposed approach) was improved by 18.9% compared to standard transfer learning.
Wydawca

Rocznik
Tom
Strony
135--145
Opis fizyczny
Bibliogr. 72 poz., rys., tab.
Twórcy
  • Department of Computer Science and Engineering, Mepco Schenk Engineering College, Sivakasi, India
  • Faculty of Marine Engineering, Gdynia Maritime University, Gdansk, Poland
  • Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
  • Academy of Politics Region II, Ho Chi Minh City, Viet Nam, Viet Nam
  • Faculty of International Maritime Studies, Kasetsart University, Sri Racha Campus, Chonburi, Thailand
  • PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam, khoapnd@ut.edu.vn
Bibliografia
  • 1. A. T. Hoang et al., “Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives,” Renew. Sustain. Energy Rev., vol. 188, p. 113790, Dec. 2023, doi:10.1016/j.rser.2023.113790.
  • 2. S. C. Nita and A. Hrebenciuc, “The Importance of Maritime Transport for Economic Growth in the European Union: A Panel Data Analysis,” Sustainability, vol. 13, no. 14, p. 7961, 2021.
  • 3. S. Gomez, A. Carreno, and J. Lloret, “Cultural heritage and environmental ethical values in governance models: Conflicts between recreational fisheries and other maritime activities in Mediterranean marine protected areas,” Mar. Policy, vol. 129, p. 104529, 2021.
  • 4. A. Vineetha Harish, K. Tam, and K. Jones, “BridgeInsight: An asset profiler for penetration testing in a heterogeneous maritime bridge environment,” Marit. Technol. Res., vol. 6, no. 1, p. 266818, Sep. 2024, doi: 10.33175/mtr.2024.266818.
  • 5. N. Agarwala and C. Saengsupavanich, “Oceanic Environmental Impact in Seaports,” Oceans, vol. 4, no. 4, pp. 360–380, Nov. 2023, doi: 10.3390/oceans4040025.
  • 6. A. T. Hoang et al., “Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway,” J. Clean. Prod., vol. 355, p. 131772, Jun. 2022, doi: 10.1016/j.jclepro.2022.131772.
  • 7. S. Vakili, A. I. Olcer, A. Schonborn, F. Ballini, and A. T. Hoang, “Energy‐related clean and green framework for shipbuilding community towards zero‐emissions: A strategic analysis from concept to case study,” Int. J. Energy Res., vol. 46, no. 14, pp. 20624–20649, Nov. 2022, doi: 10.1002/er.7649.
  • 8. F. A. Barata, “High cost of logistics and solutions,” in 17th International Symposium on Management (INSYMA 2020), 2020, pp. 407–410.
  • 9. A. T. Hoang, V. D. Tran, V. H. Dong, and A. T. Le, “An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel,” J. Mar. Eng. Technol., vol. 21, no. 2, pp. 73–81, Mar. 2022, doi: 10.1080/20464177.2019.1595355.
  • 10. L. Bilgili and V. Şahin, “Emission and environmental cost estimation of ferries operating in Lake Van,” Marit. Technol. Res., vol. 5, no. 3, p. 262215, Feb. 2023, doi: 10.33175/mtr.2023.262215.
  • 11. V. V. Pham and A. T. Hoang, “Technological perspective for reducing emissions from marine engines,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 6, pp. 1989–2000, 2019, doi:10.18517/ijaseit.9.6.10429.
  • 12. D. M. Bernhofen, Z. El-Sahli, and R. Kneller, “Estimating the effects of the container revolution on world trade,”J. Int. Econ., vol. 98, pp. 36–50, Jan. 2016, doi: 10.1016/j.jinteco.2015.09.001.
  • 13. V. D. Bui and H. P. Nguyen, “Role of Inland Container Depot System in Developing the Sustainable Transport System,”Int. J. Knowledge-Based Dev., vol. 12, no. 3/4, p. 1, 2022, doi: 10.1504/IJKBD.2022.10053121.
  • 14. T. T. Le et al., “Management strategy for seaports aspiring to green logistical goals of IMO: Technology and policy solutions,” Polish Marit. Res., vol. 30, no. 2, pp. 165–187, 2023, doi: 10.2478/pomr-2023-0031.
  • 15. J. Mangan and C. Lalwani, Global logistics and supply chain management. John Wiley & Sons, 2016.
  • 16. Y. Shou, M. Kang, and Y. W. Park, “A Systematic Literature Review of Supply Chain Integration,” in Supply Chain Integration for Sustainable Advantages, Singapore: Springer Singapore, 2022, pp. 9–29. doi: 10.1007/978-981-16-9332-8_2.
  • 17. M. D. Nguyen, K. T. Yeon, K. Rudzki, H. P. Nguyen, and N. D. K. Pham, “Strategies For Developing Logistics Centres: Technological Trends and Policy Implications,” Polish Marit. Res., vol. 30, no. 4, pp. 129–147, 2023, doi: 10.2478/pomr-2023-0066.
  • 18. Y. Zhou, Y. S. Soh, H. S. Loh, and K. F. Yuen, “The key challenges and critical success factors of blockchain implementation: Policy implications for Singapore’s Maritime industry,” Mar. Policy, vol. 122, p. 104265, Dec. 2020, doi:10.1016/j.marpol.2020.104265.
  • 19. V. Isaienko, M. Hryhorak, D. Bugayko, and Z. Zamiar, “Ecosystem Approach to the Formation of Goods Express Delivery Supply Chains in Aviation Logistics,” Logist. Transp., vol. 45, no. 1–2, pp. 19–42, 2020.
  • 20. N. Wagner and B. Wiśnicki, “Application of Blockchain Technology in Maritime Logistics,” DIEM Dubrovnik Int. Econ. Meet., vol. 4, no. 1, pp. 155–164, 2019.
  • 21. V. Yalama, O. Yakovleva, V. Trandafilov, and M. Khmelniuk, “Future Sustainable Maritime Sector: Fishing Carriers and their Adoption to the Environmental Regulations. Part I,”Polish Marit. Res., vol. 29, no. 3, pp. 69–77, Sep. 2022, doi: 10.2478/pomr-2022-0027.
  • 22. H. Fajri, H. Fakhrurroja, and M. Lubis, “Social Media Analysis on Aquaculture SupplyChain Management: A Case Study on Freshwater Lobsters,” in 2022 International Conference Advancement in Data Science, E-learning and Information Systems (ICADEIS), Nov. 2022, pp. 01–06. doi: 10.1109/ICADEIS56544.2022.10037283.
  • 23. N. D. K. Pham, G. H. Dinh, H. T. Pham, J. Kozak, and H. P. Nguyen, “Role of Green Logistics in the Construction of Sustainable Supply Chains,” Polish Marit. Res., vol. 30, no. 3, pp. 191–211, Sep. 2023, doi: 10.2478/pomr-2023-0052.
  • 24. S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F.-Y. Wang, “Blockchain-Enabled Smart Contracts: Architecture, Applications, and Future Trends,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 49, no. 11, pp. 2266–2277, Nov. 2019, doi: 10.1109/TSMC.2019.2895123.
  • 25. H. P. Nguyen, P. Q. p. Nguyen, and V. D. Bui, “Applications of Big Data Analytics in Traffic Management in Intelligent Transportation Systems,” Int. J. Informatics Vis., vol. 6, no. 1–2, pp. 177–187, 2022.
  • 26. H. P. Nguyen, P. Q. P. Nguyen, and T. P. Nguyen, “Green Port Strategies in Developed Coastal Countries as Useful Lessons for the Path of Sustainable Development: A case study in Vietnam,” Int. J. Renew. Energy Dev., vol. 11, no. 4, pp. 950–962, Nov. 2022, doi: 10.14710/ijred.2022.46539.
  • 27. M. Lind et al., “The future of shipping: Collaboration through digital data sharing,” in Maritime informatics, Springer, 2020, pp. 137–149.
  • 28. T. Jensen, J. Hedman, and S. Henningsson, “How TradeLens Delivers Business Value With Blockchain Technology,”MIS Q. Exec., vol. 18, no. 4, pp. 221–243, Dec. 2019, doi: 10.17705/2msqe.00018.
  • 29. M. E. Manuel and R. Baumler, “The Evolution of Seafarer Education and Training in International Law,” 2020, pp. 471– 494. doi: 10.1007/978-3-030-31749-2_22.
  • 30. J. Choi, S. Lee, and S. Kim, “Improving the current regulatory issues concerning training ships for maritime institutions: The South Korean case,” Asian J. Shipp. Logist., vol. 38, no. 3, pp. 125–134, Sep. 2022, doi: 10.1016/j.ajsl.2022.02.001.
  • 31. S. S. Norman and M. R. Othman, “Reviving the Klang Valley Economy During Pandemic Through Digitalisation of the Maritime Logistics Industry,” J. Marit. Logist., vol. 1, no. 2, pp. 40–55, Apr. 2022, doi: 10.46754/jml.2021.12.003.
  • 32. A. Noor, “Adoption of Blockchain Technology Facilitates a Competitive Edge for Logistic Service Providers,”Sustainability, vol. 14, no. 23, p. 15543, Nov. 2022, doi: 10.3390/su142315543.
  • 33. E. Surucu-Balci, C. Iris, and G. Balci, “Digital information in maritime supply chains with blockchain and cloud platforms: Supply chain capabilities, barriers, and research opportunities,” Technol. Forecast. Soc. Change, vol. 198, p. 122978, Jan. 2024, doi: 10.1016/j.techfore.2023.122978.
  • 34. G. Balci and E. Surucu-Balci, “Blockchain adoption in the maritime supply chain: Examining barriers and salient stakeholders in containerized international trade,” Transp. Res. Part E Logist. Transp. Rev., vol. 156, p. 102539, Dec. 2021, doi: 10.1016/j.tre.2021.102539.
  • 35. H. Pyykko, J. Kuusijarvi, B. Silverajan, and V. Hinkka, “The Cyber Threat Preparedness in the Maritime Logistics Industry,” Proc. 8th Transp. Res. Arena TRA 2020, 2020.
  • 36. P. Howson, “Building trust and equity in marine conservation and fisheries supply chain management with blockchain,”Mar. Policy, vol. 115, p. 103873, May 2020, doi: 10.1016/j.marpol.2020.103873.
  • 37. D. Ivanov and A. Dolgui, “Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak,” Int. J. Prod. Res., vol. 58, no. 10, pp. 2904–2915, May 2020, doi: 10.1080/00207543.2020.1750727.
  • 38. F. Lorenz-Meyer and V. Santos, “Blockchain in the shipping industry: A proposal for the use of blockchain for SMEs in the maritime industry,” Procedia Comput. Sci., vol. 219, pp. 807–814, 2023.
  • 39. S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, “Blockchain technology and its relationships to sustainable supply chain management,” Int. J. Prod. Res., vol. 57, no. 7, pp. 2117–2135, Apr. 2019, doi: 10.1080/00207543.2018.1533261.
  • 40. P. Sharma et al., “Comparative evaluation of AI‐based intelligent GEP and ANFIS models in prediction of thermophysical properties of Fe3O4‐coated MWCNT hybrid nanofluids for potential application in energy systems,” Int. J. Energy Res., vol. 46, no. 13, pp. 19242–19257, Oct. 2022, doi: 10.1002/er.8010.
  • 41. Y. Shen, N. Zhao, M. Xia, and X. Du, “A Deep Q-Learning Network for Ship Stowage Planning Problem,” Polish Marit. Res., vol. 24, no. s3, pp. 102–109, Nov. 2017, doi: 10.1515/pomr-2017-0111.
  • 42. Q. Shi, Y. Hu, and G. Yan, “Fault Diagnosis of ME Marine Diesel Engine Fuel Injector with Novel IRCMDE Method,”Polish Marit. Res., vol. 30, no. 3, pp. 96–110, Sep. 2023, doi:10.2478/pomr-2023-0043.
  • 43. Z. Said et al., “Intelligent approaches for sustainable management and valorisation of food waste,” Bioresour. Technol., vol. 377, p. 128952, Jun. 2023, doi: 10.1016/j.biortech.2023.128952.
  • 44. V. G. Nguyen et al., “An extensive investigation on leveraging machine learning techniques for high-precision predictive modeling of CO 2 emission,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 45, no. 3, pp. 9149–9177, Aug. 2023, doi: 10.1080/15567036.2023.2231898.
  • 45. W. Tarelko and K. Rudzki, “Applying artificial neural networks for modelling ship speed and fuel consumption,” Neural Comput. Appl., vol. 32, no. 23, pp. 17379–17395, Dec. 2020, doi: 10.1007/s00521-020-05111-2.
  • 46. K. Rudzki and W. Tarelko, “A decision-making system supporting selection of commanded outputs for a ship’s propulsion system with a controllable pitch propeller,”Ocean Eng., vol. 126, pp. 254–264, Nov. 2016, doi: 10.1016/j.oceaneng.2016.09.018.
  • 47. T. Kowalewski, A. Podsiadło, and W. Tarełko, “Application of fuzzy inference to assessment of degree of hazard to ship power plant operator,” Polish Marit. Res., vol. 14, no. 3, pp. 7–14, Jul. 2007, doi: 10.2478/v10012-007-0012-2.
  • 48. A. Sarfaraz, R. K. Chakrabortty, and D. L. Essam, “AccessChain: An access control framework to protect data access in blockchain enabled supply chain,” Futur. Gener. Comput. Syst., vol. 148, pp. 380–394, Nov. 2023, doi: 10.1016/j.future.2023.06.009.
  • 49. P. Centobelli, R. Cerchione, P. Del Vecchio, E. Oropallo, and G. Secundo, “Blockchain technology for bridging trust, traceability and transparency in circular supply chain,” Inf. Manag., vol. 59, no. 7, p. 103508, Nov. 2022, doi: 10.1016/j.im.2021.103508.
  • 50. M. Kandpal, C. Das, C. Misra, A. K. Sahoo, J. Singh, and R. K. Barik, “Blockchain assisted Supply Chain Management System for Secure Data Management,” in 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC), Nov. 2022, pp. 1–6. doi: 10.1109/ASSIC55218.2022.10088404.
  • 51. A. S. M. S. Hosen et al., “Blockchain-based transaction validation protocol for a secure distributed IoT network,”IEEE Access, vol. 8, pp. 117266–117277, 2020.
  • 52. J. Liu, G. Yeoh, L. Gao, S. Gao, and O. Ngwenyama, “Designing a Secure Blockchain-Based Supply Chain Management Framework,” J. Comput. Inf. Syst., vol. 63, no. 3, pp. 592–607, May 2023, doi: 10.1080/08874417.2022.2089774.
  • 53. S. M. M. Hamidi, S. F. Hoseini, H. Gholami, and M. Kananizadeh, “Blockchain Capabilities to Improve the Productivity of Maritime Logistics Processes: Review, Taxonomy, Open Challenges and Future Trends,” J. Inf. Technol. Manag., vol. 14, no. Special Issue: The business value of Blockchain, challenges, and perspectives., pp. 144–170, 2022.
  • 54. H. Zhong, F. Zhang, and Y. Gu, “A Stackelberg game based two-stage framework to make decisions of freight rate for container shipping lines in the emerging blockchain-based market,” Transp. Res. Part E Logist. Transp. Rev., vol. 149, p. 102303, May 2021, doi: 10.1016/j.tre.2021.102303.
  • 55. H. Hasan, E. AlHadhrami, A. AlDhaheri, K. Salah, and R. Jayaraman, “Smart contract-based approach for efficient shipment management,” Comput. Ind. Eng., vol. 136, pp. 149–159, Oct. 2019, doi: 10.1016/j.cie.2019.07.022.
  • 56. E. Lambourdiere and E. Corbin, “Blockchain and Maritime supply-chain performance: dynamic capabilities perspective,” Worldw. Hosp. Tour. Themes, vol. 12, no. 1, pp. 24–34, Jan. 2020, doi: 10.1108/WHATT-10-2019-0069.
  • 57. M. Jović, E. Tijan, D. Žgaljić, and S. Aksentijević, “Improving Maritime Transport Sustainability Using Blockchain-Based Information Exchange,” Sustainability, vol. 12, no. 21, p. 8866, Oct. 2020, doi: 10.3390/su12218866.
  • 58. L. Li and H. Zhou, “A survey of blockchain with applications in maritime and shipping industry,” Inf. Syst. E-bus. Manag., vol. 19, no. 3, pp. 789–807, Sep. 2021, doi: 10.1007/s10257-020-00480-6.
  • 59. Z. H. Munim, O. Duru, and E. Hirata, “Rise, Fall, and Recovery of Blockchains in the Maritime Technology Space,”J. Mar. Sci. Eng., vol. 9, no. 3, p. 266, Mar. 2021, doi: 10.3390/jmse9030266.
  • 60. S. Nguyen, p. Shu-Ling Chen, and Y. Du, “Risk assessment of maritime container shipping blockchain-integrated systems: An analysis of multi-event scenarios,” Transp. Res. Part E Logist. Transp. Rev., vol. 163, p. 102764, Jul. 2022, doi: 10.1016/j.tre.2022.102764.
  • 61. D. Kim, C. Lee, S. Park, and S. Lim, “Potential Liability Issues of AI-Based Embedded Software in Maritime Autonomous Surface Ships for Maritime Safety in the Korean Maritime Industry,” J. Mar. Sci. Eng., vol. 10, no. 4, p. 498, Apr. 2022, doi: 10.3390/jmse10040498.
  • 62. K. H. Kwak, J. T. Kong, S. I. Cho, H. T. Phuong, and G. Y. Gim, “A study on the design of efficient private blockchain,” Comput. Sci. Appl. Informatics 5, pp. 93–121, 2019.
  • 63. U. Majeed, L. U. Khan, I. Yaqoob, S. M. A. Kazmi, K. Salah, and C. S. Hong, “Blockchain for IoT-based smart cities: Recent advances, requirements, and future challenges,” J. Netw. Comput. Appl., vol. 181, p. 103007, 2021.
  • 64. S. Tanwar, Q. Bhatia, P. Patel, A. Kumari, P. K. Singh, and W.-C. Hong, “Machine learning adoption in blockchain-based smart applications: The challenges, and a way forward,” IEEE Access, vol. 8, pp. 474–488, 2019.
  • 65. M. Shafay, R. W. Ahmad, K. Salah, I. Yaqoob, R. Jayaraman, and M. Omar, “Blockchain for deep learning: review and open challenges,” Cluster Comput., vol. 26, no. 1, pp. 197–221, 2023.
  • 66. R. Xu, Y. Chen, and E. Blasch, “Decentralized access control for IoT based on blockchain and smart contract,” Model. Des. Secur. Internet Things, pp. 505–528, 2020.
  • 67. R. Xu, Y. Chen, and E. Blasch, “Decentralized Access Control for IoT Based on Blockchain and Smart Contract,” in Modeling and Design of Secure Internet of Things, Wiley, 2020, pp. 505–528. doi: 10.1002/9781119593386.ch22.
  • 68. G. Lin, S. Wen, Q.-L. Han, J. Zhang, and Y. Xiang, “Software vulnerability detection using deep neural networks: a survey,” Proc. IEEE, vol. 108, no. 10, pp. 1825–1848, 2020.
  • 69. B. S. Egala, A. K. Pradhan, V. Badarla, and S. P. Mohanty, “iBlock: An Intelligent Decentralised Blockchain-based Pandemic Detection and Assisting System,” J. Signal Process. Syst., vol. 94, no. 6, pp. 595–608, Jun. 2022, doi: 10.1007/s11265-021-01704-9.
  • 70. D. Trautwein et al., “Design and evaluation of IPFS,” in Proceedings of the ACM SIGCOMM 2022 Conference, Aug. 2022, pp. 739–752. doi: 10.1145/3544216.3544232.
  • 71. S. K. Panda and S. C. Satapathy, “An investigation into smart contract deployment on Ethereum platform using Web3. js and solidity using blockchain,” in Data Engineering and Intelligent Computing: Proceedings of ICICC 2020, 2021, pp. 549–561.
  • 72. G. D’ANGELO and p. F. COSTA, “Ethereum blockchain as a decentralized and autonomous key server: storing and extracting public keys through smart contracts,” 2017.
Uwagi
PDF zawiera błędny numer ORCID dla autora Xuan Huong Nguyen;
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5b5dc3a1-439f-41e0-92c8-d626aebbcac6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.